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Abstract

Documentation is essential to software development. Experienced program-
mers know this well from having worked with poorly documented code. They
wish to improve their documentation techniques and habits, but there is little
consensus for them to follow. Somehow, the many different standards must be
compared objectively. This desire motivates my work, which aims to better

understand existing documentation practices.

This work focuses exclusively on comments within the program code. Pro-
gramming is a complex human activity, despite a widespread misconception
among programmers that writing code is a mechanical process. This is es-
pecially true of comments, where programmers express themselves freely. My
work fills a gap in research on software documentation by systematically inves-
tigating the comments in a unique database of code written by programmers

under natural conditions.

The true variety of programming behaviour is surprising. But this variety does
not mean that the output of programmers is completely arbitrary; there are

patterns in this data, which my research aims to understand.
This work makes three contributions:

e A novel taxonomy of comments developed from the data, which to date
is the most thorough description of commenting behaviour actually ex-

hibited by programmers.

e Empirical hypotheses regarding large scale commenting behaviour, which
were validated on separate test data. These hypotheses describe under-
lying regularities in programming which appear to transcend individual

differences.

e The database of code I collected, which has unique opportunities for
further research on software development, and is thus available for use

by other researchers.
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Chapter 1
Introduction

Documentation is essential to software development. Experienced program-
mers know well the value of documentation from having worked with poorly
documented code. All the same, experienced programmers are dissatisfied
with their own documentation. Indeed, when pressed, a surprising number

confess that they rarely document their own work. [15,20,21,25, 29|

Thus, many programmers desire to improve their documentation techniques
and habits, but there is little consensus on how to write better documentation
[15,21,23]. Somehow, the many different standards for documenting code must
be compared objectively. This desire motivates my work, which aims to better

understand existing documentation practices.

This work focuses exclusively on one form of documentation: comments within
the program code. Commenting is a feature of all programming languages
which allows programmers to embed unrestricted text in their code. Comments

exist solely for humans to read, since they have no effect on the executed code.

Programming is a complex human activity. Despite a widespread misconcep-
tion among programmers, writing code is not a mechanical process. This is
especially true of comments, where programmers express themselves freely.

(4,20, 21,29

My study was purely observational. I investigated the comments present in a

unique database of code. My work fills a gap in research on how programmers



comment, because I systematically investigated code written by programmers

working under natural conditions.

In code freely written by programmers, the true variety of programming be-
haviour is surprising. But this variety does not mean that the output of
programmers is completely arbitrary; there are patterns in this data, which

my research aims to understand.

1.1 Scope

My study is limited to comments within the code. In doing so I had to consider
the meaning of the code, but only as needed to understand the context of the

comments. The detailed execution behaviour of the code was largely irrelevant.

I do not advance a particular theory of programmer behaviour. However, the
empirical results I describe should emerge naturally from any successful theory.
Nonetheless, I situate my observations with respect to existing knowledge from

the literature on programmer behaviour.

1.2 Contributions

My work makes three main contributions. First, the data suggests a novel
taxonomy of comments, allowing future researchers to catalogue the breadth
of commenting behaviour in a systematic way. To date, this taxonomy is the
most thorough attempt to describe the full range of commenting behaviour

actually exhibited by programmers.

Secondly, from the pilot data set, I created a set of empirical hypotheses con-
cerning large scale commenting behaviour. They were validated using the test
data set, which was concealed while the hypotheses were being developed.
Thus, even though programming is a complex human activity, it has some un-
derlying regularities. Furthermore, many of these observed regularities appear

to transcend the differences between individual programmers.



The third contribution may yet prove to be the most valuable. The database of
code that I collected has unique properties which can be exploited for research
on software development. For some research programs, this data represents
an opportunity that is difficult to find elsewhere. To this end, the data was
collected under terms of consent which allow it to be retained indefinitely and

shared with other researchers (see Section 2.1.4 for more information).

1.3 Structure of this Work

This work is built around a case study of fifty-two code bases which I have
collected. Chapter 2 gives an overview of this database, including relevant

background information describing the context in which the code was written.

Chapter 3 contains qualitative observations on the twelve code bases which
form the pilot data set. Thorough observation solves two serious problems
with much existing research: ignoring phenomena which legitimately occur,
and assuming the existence of phenomena which do not actually occur. Using
this data to ground speculation and examining it comprehensively avoids both
of these problems. The existing literature is referenced as needed to better

understand the observations.

Chapter 4 provides quantitative observations of aggregate commenting be-
haviour in the pilot data set. These observations are formalized as hypotheses,
which makes it possible to objectively test the validity of my findings using
the forty code bases which comprise the test data set. This chapter is the most

technical part of this work.

Chapter 5 contains speculation on the deeper meaning of what was observed.
I also discuss the role that commenting plays in software development, and

provide some directions for future work.



Chapter 2
Overview

Models of programming originate in unique personal experiences, but these
experiences are extremely heterogeneous. As a result, disagreement is endemic
in discussions on the nature of programming [10,23,29]. To be more objective,

this work is based on the study of a fixed set of code bases.

This chapter describes this data set and its origin. To appreciate the examples
in this work, which come directly from the data, this chapter provides the com-
plete context in which the code was written. Finally, the specific procedures

used to process the data are discussed.

2.1 The Data Set

The database of code comprises assignment submissions from three offerings
of the course CS 452: Real-Time Programming. This course is offered in the
School of Computer Science at the University of Waterloo [32], and is normally
taken by Computer Science or Software Engineering undergraduate students
in their final year. This course is widely known to have the most challenging

programming assignments of any course offered by the university.

The code written in this course cannot be dismissed as “student code”. A
typical student in this course already has almost two years of industry experi-

ence, and most join the software industry shortly after taking the course. In



other words, the students in this course are already writing code at the level

expected of programmers in the industry.

The students did not expect their code or comments to be read in detail. Their
code is evaluated by the course staff at a functional level: for the purposes of
the course, the quality of their code is determined completely by how well it
runs. They are also not given any specific coding style guidelines to follow. So,
this data set exhibits programmers working in a natural environment, where

they are free to do as they please.

2.1.1 Summary of the Course

After a preliminary assignment, which is a qualifying test for prospective stu-
dents, the remaining students form groups of two (or three when there is an
odd number of students). In the first part of the course, the students write an
operating system to run on an embedded system which has an Advanced RISC
Machine™ (ARM™) processor. This operating system has a microkernel archi-

tecture with message passing primitives for inter-process communication [6,14].

The operating system runs directly on the hardware; the students are provided
only code for a sample program which displays the message: “Hello, World!”.
This is a traditional first program written in an unfamiliar environment to

ensure that the toolchain is working as expected.

In the second part of the course, they use the attached serial port to control
a model train set. They create a program which routes multiple trains to
destinations selected by the user. The program manipulates switches on the

track to direct the trains, using only intermittent input from contact sensors.

The course ends with a final project in which the students use their system to
create an application of their choosing. In good projects, several trains move
simultaneously to achieve multiple goals. Interesting behaviour occurs when

the goals come into conflict.

For example, a popular type of project is a game of “tag”, where one train
tries to evade capture by another train. Another popular type of project is

a simulation of cargo transport, where the trains strive to meet an artificial



schedule. The students set their own goals for the final project; the philoso-
phy of the course is that interesting goals should be neither too easy nor too
difficult.

2.1.2 Characteristics of the Data Set

The data set consists of programming assignments collected from twenty-six
groups of student programmers. They submit code for a number of assignment
milestones. Each combination of group and milestone has an associated code
base: the group’s submission for that milestone. Each code base consists of
many submitted files, some of which contain the source code which is the

subject of this study.

Their code is primarily written in the C programming language, and is com-
piled with a version of the GNU Compiler (GCC) that emits code for the
ARM™ architecture. This combination of language and compiler is recom-
mended by the course staff, but the students are permitted to use other tools.
Some ARM™ assembly language programming is required to implement criti-
cal functionality of their operating system. Each code base also includes sup-
port code, such as shell scripts and Makefiles, written in other programming

languages.

The data was collected from three offerings of the course: Spring 2011, Fall
2011, and Spring 2012. These three portions of the data set are referred to as
the A-, B-, and C-series respectively.

For the B- and C-series, every student gave consent for their code to be studied.
Unfortunately, I obtained consent from only 6 of the 10 groups for the A-series.
It was collected well after that offering of the course had ended, and contacting

the course alumni by email was less reliable than asking in person.

Narrowing Focus

Each group submits seven assignments in total: four operating system mile-

stones and three train project milestones. These assignments are cumulative;



each group progresses through the seven milestones by building on work com-
pleted for the previous milestones. I decided to focus exclusively on the final
operating system milestone (coded as k4) and the final train project milestone
(coded as p3).

The operating system and train project tasks are very different. Building the
operating system is a well-defined problem: they are given a specification to
implement, so the distinction between success and failure is clear. The train
project is undefined; students must work out messy details by themselves, and
success is evaluated subjectively. Therefore it is worth comparing the finished

operating systems to the train projects.

The milestones leading up to these completion milestones are mostly redundant
with the completed versions. They could be used to study the development
history of the code. Owing to the difficulty of accurately tracking code changes

[13], I leave this to future work.

Figure 2.1 gives an overview of the data. Each group is referred to by a code
such as BO7, consisting of the series letter together with a unique number,

which was randomly assigned.



Milestone k4

Milestone p3

Group Lines of Code | Commented Lines* | Lines of Code | Commented Lines*
A01 6109 674 (11%) 14 388 1206 (8%)
A02 4255 519 (12%) 7106 722 (10%)
A03 5845 1255 (21%) 11594 2405 (21%)
A04 5996 988 (16%) 15547 2452 (16%)
A05 4985 587 (12%) 10811 1419 (13%)
A06 8110 707 (9%) 14609 1164 (8%)

A Total 35300 4730 (13%) 74055 9368 (13%)
Bo1 4578 435 (10%) 7784 630 (8%)
B02 4636 717 (15%) 10125 2013 (20%)
B03 6411 536 (8%) 9153 678 (7%)
B04 2528 166 (7%) 6429 266 (4%)
B05 4321 534 (12%) 10498 1176 (11%)
Bo6 3801 658 (17%) 6508 982 (15%)
Bo7 1573 176 (11%) 3060 231 (8%)
B08 3886 289 (7%) 12665 755 (6%)
B09 4832 407 (8%) 11824 1100 (9%)
B10 4613 316 (7%) 7196 462 (6%)

B Total 41179 4234 (10%) 85242 8293 (10%)
Co1 3961 783 (20%) 8576 1510 (18%)
C02 6345 1290 (20%) 13170 1997 (15%)
Co03 2998 116 (4%) 6684 275 (4%)
Co04 3331 186 (6%) 8140 556  (7%)
C05 3348 185 (6%) 6978 922 (13%)
C06 4686 375 (8%) 6538 499 (8%)
co7 3283 319 (10%) 10840 898 (8%)
Co08 3676 427 (12%) 8283 650 (8%)
C09 2738 280 (10%) 5017 530 (11%)
C10 7574 802 (11%) 14473 1285 (9%)

C Total 41940 4763 (11%) 88699 9122 (10%)

Grand Total 118419 13727 (12%) 247996 26783 (11%)

* Commented lines counts the lines of source code which contain part of a comment. The
bracketed quantity expresses this number as a proportion of the total number of lines.

Figure 2.1: Overview of the data set



2.1.3 Merits of the Data Set

Although the code in the data set is written in an academic environment,
the course has aspects which give the code a higher level of quality than is
normally expected from this setting. The code is also more natural in being
written freely, without constraints imposed by specific development practices.
Studying code written in an academic environment also provides valuable con-

trol over the programming task and programming environment.

Quality of the Data

This course is unusual in that the assignments are completely cumulative. In
particular, students who fail to complete a given milestone are not given a
solution after the deadline has passed (some courses provide this service to the
students as a “safety net”). So, writing defective code has real consequences,

especially during the operating system portion of the course.

Indeed, many groups experience setbacks requiring as much as forty hours of
debugging time when they encounter the particularly nasty bugs typical of
operating system development. Such bugs have no discernible effect until the
system is put under stress; they evade detection until the operating system is

used to support a complex application.

Since the students are not given elaborate starter code, they provide the design
themselves, although they are given suggestions in the class lectures. They
decide which data structures and algorithms to use, and how to decompose
their program into separate modules. They make their own design decisions,

and this variety is present in the data.

For the train project, they write programs which interact with entities in the
physical world. This is different from most programming assignments given in
an academic setting, where instructors isolate the key part of the problem from
the burdensome details. So, the train project features programmers solving

realistic problems.



Scientific Control

For the operating system task, the students implement to a common speci-
fication. So, there are twenty-six code bases all solving the same task, and
written in the same environment. This much duplication of effort would never
occur naturally within a single industrial organization. Also, the cost to ob-
tain this level of duplication by hiring programmers is prohibitive (an informal
estimate of the effort expended by the students to create the data set exceeds

five person-years of full time employment).

This level of control has one major downside: results obtained from this data
set may fail to generalize to other programming tasks and environments. This
work accepts this limitation, and studies the universe of code bases written in
the course CS 452. Since the B- and C-series have a perfect response rate, the
data has the entire population of this smaller universe for those two terms.

Future work will establish which results generalize to other environments.
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2.1.4 How to Obtain the Data

This data set is a rich repository of programming in the wild. To focus properly
on the study of commenting, I have ignored all other aspects of the code, many
of which merit examination in their own right. There remains much to learn
from this data set. Therefore, I am making the data available for further

research.

The data set was collected from three offerings of the course: Spring 2011,
Fall 2011, and Spring 2012. Spring 2011 was collected after the fact and is
incomplete, with data from six out of ten groups. Fall 2011 and Spring 2012 are
both complete with ten groups each. Each group submitted seven assignments
in total: four operating system milestones and three train project milestones.

The redacted versions of these code submissions are available for further study.

However, due to oversights during data collection, some submissions from the

early project milestones are missing and could not be recovered.
e Fall 2011, p1: Missing B01, B02, B06
e Fall 2011, p2: Missing B06
e Spring 2012, pl: Missing C06
e Spring 2012, p2: Missing C06, C10
Contact information for obtaining the data is maintained at
http://www.cgl.uwaterloo.ca/~commenting/

Also available there for download is the list of files and comments studied in
Chapters 3 and 4, with all textual information removed. This allows others to

scrutinize or extend the statistical analysis presented in this work.
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2.2 Methodology

Funny how when you're writing stuff like this your
life is always as hard as possible because you need
to deal with all cases.

From the comments of group A01

This is a study of naturalistic observation; no variables were manipulated.
The students were informed about this study only after completing the final
assignment. They could then choose to participate by providing their consent.
In this way, their commenting behaviour is free of influence from awareness
that their code would be read by others.

In discussing the observations, comments drawn from the data are presented

as examples. Consider the code excerpt shown in Figure 2.2.

72 // Set interrupt entry points.
73 *SYS_VEC_DATA_ABT = (void *)asm_data_abort_entry;
74 *SYS_VEC_UNDEFINED_INST =
(void #*)asm_undefined_instruction_entry;
756  *SYS_VEC_SWI = (void *)asm_swi_entry;

Figure 2.2: Excerpt from a01/k4/src/system.c

This excerpt comes from a source file named “system.c” in group A01’s
submission of milestone k4. Line numbers referring to the excerpt’s location
in the source file are printed in the left column. Leading whitespace common
to all of the lines in the excerpt is omitted. For example, each line of the

excerpt in Figure 2.2 begins with two spaces in the original source.

Regions of interest are highlighted; usually this is the comment itself. Lines
of code surrounding the comment are also printed when they supply relevant
context. Ellipsis represent part of a logical unit of code which has been elided.
After line 75 in Figure 2.2, there are two more lines of code that also set
interrupt entry points. The ellipsis is not part of their code, indicated by the

absence of a printed line number.
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Programmers often write lines of code which are too long to fit within the
margins of a printed page, and must be broken, as in line 74 of Figure 2.2.
This is not ideal, because the formatting is changed from the author’s intention,
but there is no satisfactory alternative which preserves the original code [24].
I broke the lines myself, and tried to preserve the visual aesthetics of the code.

Broken lines are indicated by giving no line number to the continuation.

2.2.1 Anonymity Considerations

To maintain the integrity of each code base, files written by the same group
must be kept together. This is also important because individual variation
between programmers may obscure the differences being studied [2,9]. There-
fore, each group is assigned an identification code which cannot be linked to
their real identities. However, this identification code indicates the term in
which they took the course, since each class shares an environment, and the

differing environments between terms may affect the data.

The raw files contain identifiers such as names, emails, and usernames. For
example, some build scripts reference personal directories by name. There are
also student numbers (sometimes included in file headers), and public group
numbers, provided so that group members can share files in the computing
environment. Some groups gave names to their operating system or project,
which I considered to be personal identifiers. Finally, they submit MD5 hash
values of their files as checksums. For many files, personal identifiers from the
original version can be reconstructed if this hash value is known, so these hash

values are also sensitive information.

Redacting the Files

All personal identifiers were redacted. Because of the volume of data, the
redaction process was largely automated with two specially written programs.
The first program replaces personal identifiers with an appropriate variant
of “redacted”. This program is conservative; it matches the input against

templates derived from the class list. The second program complements the
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first; it searches for personal identifiers left over in the redacted output. This
program is lenient and generates many false positives. Alternating use of the
two programs, I improved the first until it redacted every personal identifier

detected by the second program.

Binary files (files not consisting entirely of human-readable text) are discarded,
because personal identifiers in binary data easily evade detection. The remain-
ing files are thus ensured to be strictly plain text for the redaction program.
For a few files, special characters are changed to their ordinary ASCII equiva-
lents to be intelligible to the redaction script. After this conversion, each file
consists only of the printable characters in the ASCII code range 32-126, plus
newlines (ASCII code 10), and tabs (ASCII code 9).

Some personal identifiers are less straightforward and were thus handled as
special cases. For example, some files bear the name of their operating system
or project; these file names are redacted. To preserve anonymity, further
details about these special redactions are withheld. However, the redaction
process has the following property: a line of code was altered from the original

version if and only if it contains the string “redacted” (in any case).

Therefore, lines modified from the original are marked, so they can be excluded
from the analysis when appropriate. For example, the data does not imply
that the word “redacted” is commonly written in comments! There are also
more subtle problems: failing to exclude redacted text skews the distribution

of word lengths in favour of eight-letter words.

I manually reviewed all redaction changes to verify that the programmers’
identities were obscured, and that every redaction change was necessary. The
complex structure of the code, even as text documents, prevents absolute
certainty that every link to identity has been removed. For this reason, only

excerpts are published here, since they can be checked thoroughly.
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2.2.2 Gathering the Comments

Their files were processed to compile a list of comments which is the main
subject of this study. This requires more structure than is explicit in the

actual data, so this section describes how this extra structure was recovered.

Sorting the Files

The files were first sorted to select files containing code, because their sub-
missions also included other files. Presumably these other files resided in the
directory of submitted source code. Some of the extraneous files are documen-
tation, such as README files or “to do” lists. Others are simply junk, such as

metadata files created by development tools.

Source code, the program text maintained by programmers, is distinguished
from generated code, which is created by compiling source code. Generated
code is redundant, since it can be uniquely derived from the combination of
source code and compiler. It is also not directly read or modified by program-

mers.

I discarded the generated code, but this was complicated by a unique aspect
of the course. The course-provided Makefile compiles C source code (.c files)
first into assembly language code (.s files), and then compiles the assembly
language files into binary object files (.o files). The intermediate assembly lan-
guage files remain after the build finishes; students are encouraged to examine
them to acquaint themselves with the assembly language used by ARM™ pro-

Cessors.

The students also write a small amount of assembly language code by hand
to implement low level features of the operating system. This code may be
embedded in C source files, or compiled directly from assembly language files.
They often use their compiler’s output to create the initial versions of these

assembly language files.

Therefore, sorting assembly language files is difficult, since compiler output is

present even in legitimate source code. Here I encountered my first big sur-
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prise about their commenting behaviour. Biased by my own habit of heavily
commenting assembly language code, I assumed that any hand written assem-
bly language code would have at least one comment. However, fifteen of the
twenty-six groups have an assembly language source file devoid of comments!

So, such a simple rule failed to correctly sort all of the assembly language files.

Indeed, no mechanical sorting procedure was found. In the end, I sorted
the files manually. To mitigate human error, my manual judgements were
compared with naive heuristics; files for which these differed — 3% of 4301 files

— were double checked.

The students are provided with a script to generate code which initializes a
data structure with the topology and measurements of the train track. Some
groups modified the generated code in “track_data.c”, instead of modifying
the script which creates it. So, this file began as generated code, and then
became source code. The nature of this file poses problems: the original
version is extremely long at 2357 lines, and the code itself is quite abnormal,
having thousands of consecutive assignment statements with no comments.
Therefore, files derived from “track data.c” are unconditionally excluded

from the analysis.

Extracting the Comments

Comments are defined by the formal syntax of the programming language. For

the programming languages used in the data, a comment is either:

e a line comment, which begins with one of the indicators “//7, “#7, or

“@”, and runs until the end of the line,

e or a bracketed comment, which begins with the indicator “/*”, and ends

with the first occurrence of “*/” found thereafter.

The data includes code written in many programming languages, including C,
C++, ARM™ assembly language, Make, GNU linker language, Python, and
the shell scripting languages sh and bash. Therefore, I wrote a simple parser

to extract the comments, since writing a parser which accepts comments from
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all of these programming languages is easier than obtaining an official parser

for each language.

The parser ignores all syntax except comments and string constants. It must
understand string syntax since a comment indicator within a string constant
is part of the string. For example, the highlighted region in Figure 2.3 is not

a comment.

521  void dump_calibration( struct train_data* DATA ) {
522 int 1i;

523
524 Printf( COM2, "//Train %d\n", DATA->calibration.number );
525 for( i = 0; i < NUM_LOGICAL_SPEEDS; i++ ) {

Figure 2.3: Excerpt from a04/p3/src/tasks/user_train.c

Merging the Comments

When a line comment is too long, programmers often split it into multiple line
comments. For example, the comment in Figure 2.4 is intended to be read as

a single comment.

46  // Remove item from head of queue. If queue is empty,

47 // then item is set to null. Returns non-zero only when

48 // successfully retrieved last item and queue becomes empty.
49 int RemoveQueueFront (Queuex queue, TaskDescriptor** item) {

Figure 2.4: Excerpt from a02/k4/src/kernel.c

For this particular example, a single comment is surely intended because the
line breaks occur in the middle of sentences. It is more difficult to be this

certain for comments which are not fully punctuated.

Each line is a separate comment according to the programming language syn-
tax, but I treat adjacent line comments as a single comment when they belong
together. Adjacent line comments are automatically merged when all of the

following conditions hold.
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e They begin with the same comment indicator.

e They begin in the same column of the file. That is, they have the same

level of indentation.
e There are only whitespace characters between them.

This heuristic makes mistakes, so some merges were undone by hand. For
example, in Figure 2.5, the highlighted comment was manually separated from

the comment on the next line.

107  // Create the user and guards (we don't trash these)
108 // game.user_tid = create(16, &dumb_user_main);
109  game.user_tid = who_is("ui"); // Commands now come from the UI

Figure 2.5: Excerpt from a03/p3/src/redacted.c

The strictness of the above rules prevents some correct merges, usually owing
to inconsistent indentation. Therefore, I corrected the division of comments as
mistakes were discovered during the classification of comments in Chapter 3.
Interpreting comments is not an exact science, because it requires correctly
inferring the intent of the programmer. Indeed, Van de Vanter states that
“the notion of a single comment is itself ill-defined” [29]. Manual intervention

occurred for 3% of the comments in the pilot data set.

Filtering the Comments

Some comments in the data set should be excluded from the analysis, because

they are not documentation. These undesirable comments are described below.

The code provided to the students contains a few comments. As they do not
originate from the students, these provided comments are excluded. In some

cases, multiple identical copies of these comments would bias the analysis.

Many of their assembly language source files are modified copies of files gen-
erated by the compiler. Some of the generated code includes comments, such

as the highlighted comment in Figure 2.6.
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118
119
120
121
122
123
124
125
126
127
128
129

130
131

6  baseaddr:

7 @ args = 0, pretend = 0, frame = 4

8 @ frame_needed = 1, uses_anonymous_args = O
9 mov ip, sp

10 stmfd sp!, {sl, fp, ip, lr, pc}

Figure 2.6: Excerpt from a04/k4/src/kern/baseaddr.S

These compiler-generated comments were not written by the programmers, so
they are excluded. Fortunately these comments are easy to pattern match

against a small set of templates, since they are created deterministically.

Finally, many comments are code that is commented out. Since comments are
not executed, this is an easy way to “turn oft” a piece of code. These comments
are excluded since I am interested only in comments that programmers write

as documentation.

Nested Comments

The data required me to consider nested comments: comments entirely con-

tained within other comments. Consider the comment in Figure 2.7.

/*ap_init_buff ( &pbuff );

ap_putstr( &pbuff, "\x1B[?7251"); //hide cursor

ap_putstr( &pbuff, "\x1B[1;75f"); //move to clock position
ap_putstr( &pbuff, "\x1B[1;32m"); //set attributes

ap_printf ( &pbuff, "%d %", ( (100 * idle_time) / total_time) );
ap_putstr( &pbuff, "\x1B[Om"); //clear attributes

ap_putstr( &pbuff, "\x1B[u"); //return to CL

ap_putstr( &pbuff, "\x1B[?25h"); //show cursor

Putbuff ( COM2, &pbuff );

if(i%10 == 0) {
CommandQOutput ("total_time: %d idle_time: %d current time %d4",
total_time, idle_time, current_time);

*/
Figure 2.7: Excerpt from a04/p3/src/tasks/system_idle.c
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This commented-out code contains six legitimate line comments. 1 separated
these comments from the large comment, so that they can be retained while
the highlighted section is discarded.

The notion of nested comments is absent in the programming language syntax,
which sees Figure 2.7 as one comment. The extent of a comment, as defined by
any of the programming languages in the data, is always contiguous as the file
is read line by line, from left to right. This is because the compiler sees each
file as a one-dimensional sequence of characters. This is depicted in Figure 2.8
for part of Figure 2.7, beginning on line 125. The end of a line is a character

like any other (shown in Figure 2.8 as “ 7).

.-+ ap_putstr( &pbuff, "\x1B[?725h"); //show cursor J Putbuff( ---

Figure 2.8: Excerpt from a04/p3/src/tasks/system_idle.c

The highlighted region in Figure 2.7 looks contiguous on the page, but is
clearly disconnected in Figure 2.8. This shows how programmers think about
their code in terms of its two-dimensional layout. This layout is essential
for correctly interpreting comments, and cannot be expressed in terms of the

formal syntax of the programming language [29].

Finalizing the Comment List

Aside from the compiler-generated comments, the undesirable comments could
not be identified automatically. Therefore, they were excluded manually, but
with some assistance from automated heuristics. In the end, just 0.7% of the
comments were classified incorrectly by the heuristics. Figure 2.9 shows the

proportions of excluded comments.

Source ‘ Proportion
compiler-generated 0.3%
provided 5.4%
commented-out code 6.7%

Figure 2.9: Proportions of undesirable comments in the A-series
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The remaining 87.6% of the comments are the comments I studied; these are
the comments that I believe were purposely written by the programmers as

documentation.

There is an important trend, evident even during this preliminary data pro-
cessing. Mechanical procedures can handle most of the data, but there are
always exceptional cases requiring special treatment. This theme continues
throughout the study: there are definite trends in the bulk of the data, but

every rule has exceptions.
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Chapter 3
Qualitative Observations

This chapter reports my observations of the twelve code bases comprising the
pilot data set. In formulating hypotheses about commenting behaviour, I

allowed myself to look freely at this data.

The examples in this chapter all come from this data set. In particular, I make
a point of avoiding artificial examples. In this way, I only discuss aspects of
commenting behaviour which actually occur. Relevant background material is

introduced as needed to understand the observations.

This chapter focuses on the meaning and purpose of individual comments.
The comments in the data set are very heterogeneous, so a first step to under-

standing is to separate them into categories. That is, I would like to know:
What kinds of comments are there?

By systematically cataloguing their comments, I developed a taxonomy of

commenting as an attempt to answer this question.
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3.1 Previous Work

Little previous work analyzes commenting at the granularity of individual
comments. I found only two examples in the literature of attempts to describe

what kinds of comments there are.

3.1.1 McConnell’s Kinds of Comments

McConnell gives a classification of comments in his book on software con-
struction [21]. This book is unique among books on serious programming in
that it discusses the low level details involved in writing individual lines of
code. In the chapter on commenting, McConnell divides comments into six
categories. Figure 3.1 gives summarized versions of his definitions, with some

of his commentary.

e Repeat of the code: States what the code does in different words. Just

more to read.

e Ezplanation of the code: Explains complicated, tricky, or sensitive code.

Make the code clearer instead.

o Marker in the code: Identifies unfinished work. Not intended to be left

in the completed code.

e Summary of the code: Distills a block of code into one or two sentences.

Such comments are useful for quick scanning.

e Description of the code’s intent: Explains the purpose of a section of

code, more at the level of the problem than at the level of the solution.

e Information that cannot possibly be expressed by the code itself: Copy-
right notices, confidentiality notices, pointers to external documentation,

ete.

Figure 3.1: McConnell’s kinds of comments [21, with modifications]

This classification scheme is normative; it is designed for writing code, and

specifically for deciding what kinds of comments should be written. These cat-
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egories are about the value of comments, and McConnell presents them from
worst to best, excluding the last category which is a catch-all. Indeed, Mc-
Connell says that only summary, intent, and the last category are acceptable

in completed code [21].

Many comments fall outside of this classification scheme, such as the conver-

sation recorded in Figure 3.2.

6 /* FIXME: Can I assume all registers are 32 bits? */
7 /* Answer: no. WDT uses 8 bit register */

Figure 3.2: Excerpt from a06/p3/src/regopts.h

These are not marker comments: deleting them from the finished version would

discard valuable information gained during the development of the software.

Furthermore, the distinction between intent and summary comments as de-
scribed by McConnell is too fuzzy for classifying individual comments. When
I tried to use this scheme to classify the comments in the data, I felt that
I was just guessing. McConnell does admit that it is difficult to distinguish
intent and summary comments, but that this is irrelevant for the pursuit of
writing better comments [21]. This scheme is simply not designed to classify

comments which have been freely written.

3.1.2 Baecker and Marcus’s Communication Objectives

Baecker and Marcus are concerned with typesetting programs, and recognize
that different kinds of comments deserve to be formatted differently. This is
their motivation for a preliminary taxonomy of comments [1]. In this taxon-
omy they provide a list of communication objectives; their definitions of these

communication objectives are summarized in Figure 3.3.

This is a more complete set of categories to cover the variety of comments
in the data. However, these categories are not distinct enough to classify
individual comments. Furthermore, the Simulation and Indexing categories are

impossible to justify both from the data set and from my personal experience.
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e [dentification: Calls attention to the existence of a section of code.

e Emphasis: Calls attention to some aspect of additional significance about
the code.

e Description: Makes explicit intuitable attributes of the code.
e Ezplanation: Clarifies some aspect of the code.

o Amusement: Secondary text to help the reader through long or difficult

code (jokes, anecdotes, epigrams, illustrations, etc.)
o Summary and Review: Reflects upon the reader’s progress.

e Announcements or Warnings: Informs of recent changes, or provides

cautionary remarks.

o Testing, Gaming, or Simulation: Quizzes may be useful for long code

documents to test the reader’s understanding.
o Measurement or Indexing: Metrics of the code which may be useful.

e Analogies, Metaphors, Parables: Aids in understanding otherwise im-

penetrable concepts.

e Informal Remarks: Spontaneous graffiti from past programmers.

Figure 3.3: Baecker and Marcus’s communication objectives [1, with modifications]
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3.2 My Taxonomy of Commenting

Both of these works fail to describe existing commenting practice because they
focus on writing comments. Therefore I concentrate on reading comments,
and on reading all of the comments, so that I cannot overlook any aspect of

commenting behaviour.

Ideally a classification scheme would be complete (every comment belongs to
a category) and unambiguous (each comment belongs to only one category).
But not all comments can be classified in this way. Writing comments is a
creative activity, so some comments will always fall outside pre-defined cat-
egories. Also, there is always a grey area between categories that comments

can inhabit. Finally, some comments show features of several categories.

Therefore I am honest about these failures. Comments which fall outside the
defined categories are not forced to fit into one of them. Counting these unclas-
sified comments measures the completeness of a classification scheme. Also,
the coherence of the categories is improved when they can reject comments

whose membership is questionable.

I made multiple passes over the data, attempting to classify each comment
according to different taxonomies. First I tried to develop a scheme from my
own preconceptions. This failed because the number of categories grew unrea-
sonably large, and the boundaries between them became so unclear that I had
no confidence that my judgements were meaningful. Then, I tried to use the
categories from McConnell, and also from Baecker and Marcus, which failed
for similar reasons. This prompted me to concentrate my search on finding
more robust distinctions. Six basic categories were found to be sufficiently

robust, shown in Figure 3.4.

I performed the classification manually by looking at each individual comment.
A small number of comments are left unclassified. I separated the data by
milestone because many files were unmodified, or barely modified, between
the two milestones, and it seems inappropriate to give these files twice as

much weight.
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The following sections investigate these categories one by one. Each category

is separated into subcategories to understand the commenting trends in more

detail.

Milestone k4

Milestone p3

Category or Subcategory | Overall % | Category % | Overall % | Category %
Execution Narrative 54.1% 52.5%
.................... action 44.7% 83% 43.1% 82%
..................... state 5.3% 10% 5.4% 10%
.......... state-and-action 2.7% 5% 2.6% 5%
..................... other 1.4% 2% 1.4% 3%
Clarification 3.3% 5.8%
................. constant 0.8% 25% 2.8% 49%
.................... name 0.4% 11% 0.4% 6%
................ end block 1.7% 52% 1.3% 23%
................ positional 0.1% 4% 1.0% 18%
............... arithmetic 0.1% 3% 0.1% 1%
..................... other 0.2% 5% 0.2% 3%
Data Definition 12.6% 12.9%
.......... name expansion 8.3% 66% 8.3% 64%
.. 1. e. with other content 0.8% 6% 0.8% 6%
..................... other 3.5% 28% 3.8% 30%
Sectioning 7.8% 7.5%
.................. heading 6.8% 87% 6.6% 88%
.............. end marker 0.5% ™% 0.5% 7%
................... divider 0.5% 6% 0.4% 5%
Development Narrative 3.0% 3.2%
..................... to do 1.1% 38% 1.5% 46%
.................. warning 0.4% 14% 0.6% 19%
............... instruction 1.0% 33% 0.7% 22%
............... attribution 0.2% 6% 0.1% 3%
..................... other 0.3% 9% 0.3% 10%
Prologue 15.7% 14.5%
........ function summary 8.9% 57% 9.3% 64%
....................... file 3.6% 23% 2.3% 16%
......... complex function 2.4% 15% 2.2% 16%
..................... other 0.8% 5% 0.7% 4%
Unclassified 3.5% 3.6%

Figure 3.4: Proportions of all comment subcategories in the A-series
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3.2.1 Execution Narrative Comments

First are execution narrative comments, the most common category, compris-
ing just over half the comments in the data set. Figure 3.5 shows that this

category dominates for every group.

(¥
(¥ K)\q
X P S
O ool (%) A\ A\
(9 o O AY) (6§> é&fQ \pgp éﬁﬁﬁ

\We 19 N >
Code Base 006\ G o 9%& ot 9@4 9°
Overall k4 | 3019 54% 3% 13% 8% 3% 16% 3%
Overall p3 | 5964 | 53% 6% | 13% ™% 3% | 14% 4%

A01/k4 328 | 58% 5% % 2% % | 12% 9%
A01/p3 587 | 44% | 13% | 11% 2% 9% | 13% 8%

A02/k4 373 68% 6% 14% 2% 1% 8% 1%
A02/p3 | 493 | 63% | 7% | 15% | 4% | 3% | % | 1%

A03/k4 955 | 52% | < 1% | 19% 3% | < 1% | 25% 1%
A03/p3 1981 | 57% 1% | 1% 3% 1% | 21% | < 1%

AO4/kd | 701 | 63% | 1% | 6% | 11% | A% | 11% | 4%
A0O4/p3 | 1726 | 56% | 8% | 7% | 11%| 3% | 11% | 4%

AO5/k4 | 127 | 42% | 9% | 9% | 2% | 17% | 20% | 1%
A05/p3 | 300 | 40% | 6% | 19% | 2% | 14% | 11% | 8%

A06/k4 535 | 37% % | 13% | 21% 3% | 12% 7%
A06/p3 877 | 40% % | 14% | 19% 3% | 12% 5%

Figure 3.5: Proportions of basic comment categories by code base in the A-series

Execution narrative comments describe the execution of the program. The
typical execution narrative comment summarizes a block of code by describing

its effect in an English sentence, such as the comment in Figure 3.6.

225  //build the reply message
226  rpl.message_type = INPUT_SERVER_GETC_REPLY_MESSAGE;
227 rpl.c = cbuffer_pop( &cbuff );

Figure 3.6: Excerpt from a04/k4/src/tasks/system_serial.c
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This comment describes the following two lines, which populate the structure
rpl with message data. Comments that summarize a block of code belong to
the subcategory of action comments, which account for almost all execution
narrative comments: Figure 3.7 gives the breakdown of execution narrative

comments into subcategories.

Code Base | Count | action | state | state-and-action | other
Overall k4 | 1632 83% 10% 5% 2%
Overall p3 | 3132 82% | 10% 5% 3%
A01/kd4 191 | 83% | 9% 2% 6%
A01/p3 256 75% 13% 2% 10%
A02/k4 252 | 82% | 9% 3% 6%
A02/p3 312 | 83% | 9% 3% 5%
A03/k4 497 73% 20% 6% 1%
A03/p3 1130 79% 16% 4% 1%
A04/k4 442 6% 4% 10% < 1%
A04/p3 965 83% 6% 10% 1%
A05/k4 53 96% — — 4%
A05/p3 121 79% 10% 2% 9%
A06/k4 197 93% 4% — 3%
A06/p3 348 93% 3% 1% 3%

Figure 3.7: Proportions of execution narrative comment subcategories by code
base in the A-series

Action Comments

Action comments summarize the execution of a block of code, as in Figure 3.6.

These comments are written even for a single statement, as in Figure 3.8.

533 // Let the parent know we're done.
534  verify(0 == Send(parentTid, NULL, O, NULL, 0));

Figure 3.8: Excerpt from a01/k4/src/testprogs.c

This suggests that programmers find action comments useful for more than

summarizing a long section of code. To conclude this, there is a critical as-

29



sumption of competence: every comment was written by the programmer for a
reason. This can also be viewed as an assumption of efficient communication,

since writing a comment takes effort.

Assembly language code is difficult to write, which is why other programming
languages were invented in the first place. In the data, assembly language code
is often accompanied by action comments written in an ad lib programming

language, as in Figure 3.9.

109 asm_fiq uartl_receive:

110 LDR %ri13, [%r8, #4] @ %rl3 <- size

111 CMP %ri13, #512

112 BEQ uartl_receive_full

113 LDR %r10, [%r8] @ %rl10 <- start

114 ADD %ri10, %ri10, %ri3 @ %r10 <- size + start
115 ADD %ri13, %ri3, #1 @ increment size

116 STR %r13, [%r8, #4] @ store size

Figure 3.9: Excerpt from a01/k4/src/asm fiq.s

The text of these comments is more like code than like English, although its
meaning is not formally defined. The assembly language code might have been
“compiled” from the comments, but this compilation is performed manually
by the programmers. For example, the instruction “ADD %r13, %r13, #17
which adds one to register 13 is the compiled version of the comment “@

increment size”.

Referent of a Comment

Each comment refers to a specific region of code, which is called the referent
of the comment [5,17,29]. In the general sense of the word, comments can
refer to things other than code, but I will use the words “refer” and “referent”
to mean what code a comment refers to. In Figure 3.10, a box is drawn around

the referent of the highlighted comment.
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38 /* Now we should either be hitting a null or a char */
39 parse->token = parse->str;

40

41 /% If we hit null, then return nothing */

42  [if( ! parse->token[0] ){

43 parse->token = 0;

44 +

45

46  /* Set the next delimiter to null */

47  while( parse->str[0] && parse->str[0] != parse->delim ){

Figure 3.10: Excerpt from a06/p3/src/userland/lib/parser.c

An action comment describes the effect of executing its referent. Even when
the comment is too vague to reconstruct the referent, it describes the complete

effect of its referent as opposed to highlighting a single detail.

A comment is attached to its referent. If the code is rearranged, the comment
should follow its referent since that is where the comment belongs. Unfortu-
nately, the referent of a comment cannot be determined automatically, because
it is often necessary to understand the meaning of a comment to determine
its referent [5,29]. For example, the highlighted comment in Figure 3.11 only

refers to the next line.

486 case CONSOLE_OUT:

487 // Enable UART2 transmit interrupt

488 (SetFlag(Uart2Ctrl, TIEN_MASK);)

489 next->request.arg3 = 0; // arg3 is
used to keep track of data in buffer

490 break;

Figure 3.11: Excerpt from a02/k4/src/kernel.c

The referent of a comment in such a position is often the entire block (which
would include everything up to the break statement on line 490). Some pro-
grammers use blank lines to communicate where the referent ends, as in Fig-
ure 3.10. Here only by understanding the text of the comment can line 489 be

excluded.
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Kaelbling suggests that each comment have explicitly marked scope to solve
this problem [17]. This would certainly help, but the referent of a comment
can have more complex structure than a contiguous block of code. Consider

the comment in Figure 3.12.

67 [case PLAY:|// Both of the following are errors
63 case QUIT:

69 player_response.response = BAD_REQUEST;

Figure 3.12: Excerpt from a03/k4/src/rps.c

According to the linear structure of the text, the referent in Figure 3.12 is
disconnected in the way seen previously in the discussion of nested comments.
Indeed, the referent surrounds the comment on both sides! That is, this com-
ment neither precedes nor follows its referent, rather it is beside its referent.
This is more evidence that programmers reason about the program text in

terms of its two-dimensional structure.

The comment in Figure 3.13 has two referents, each with a distinct role.

71  /* previous values at last sensor read */

72 @nt last_sensor;) /* below only valid when this is not null */
73 double last_velocity;

74 double distance_since_last_sensor;

75 int last_sensor_time;

Figure 3.13: Excerpt from a02/p3/src/model.h

This comment says that the members last_velocity, distance_since_last_
sensor, and last_sensor_time are only valid if last_sensor is not null, that
is, the information about the last sensor is only valid if there actually was a
last sensor. Comments with referents that are this complex rarely occur in
the data, but they show that thinking of the referent as a contiguous block of

code is not the whole story.
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State Comments

Some execution narrative comments describe the current state of the program’s
execution. They make up just 15% of the execution narrative comments.
However, they are 8% of all comments, and are as common as other basic
categories. These state comments often describe if statements. In the data
set, there are occasionally comments like the one shown in Figure 3.14, which

describe the effect of executing an if statement using active language.

214  //check if the event id is invalid
215 if (req—->eventid >= EVENTS_NUM_EVENTS || req->eventid < 0){

Figure 3.14: Excerpt from a04/k4/src/kern/syscall_handlers.c

However, it is more common for a comment to describe the outcome after

entering the if statement, as in Figure 3.15.

482  if (next->request.argl < 0 ||

483 next->request.arg0 >= NUM_INTERRUPTS) {
484 // Invalid interrupt id

485 next->status = READY;

486 next->rv = -1;

487 } else {

Figure 3.15: Excerpt from a02/p3/src/kernel.c

The referent of such a comment is a location in the code, not a particular block
of code. The comment in Figure 3.15 says that the interrupt id is invalid if
execution has reached line 484. A state comment describes the program state
at a specific point in time; the example in Figure 3.16 uses language that

makes this explicit.
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869 // At this point, we can assume that we're on the same segment as the

870 // destination.

871 const int distToDest = distances[lmLast.LandmarkNum()] -
location.0ffsetPos();

Figure 3.16: Excerpt from a01/p3/src/track.c

State-and-action Comments

Many comments that describe the program’s state also describe an action, as

in Figure 3.17.

574 if (i < size - 1 && cmd[i] == 'r' && cmd[i + 1] == "' ')
575 {

576 cur_state = PARSE_TR;

577 }

578 else // Bad command, die

579 A

580 return PARSE_ERROR;

581 }

Figure 3.17: Excerpt from a03/k4/src/ui.c

The prevalence of these state-and-action comments is my main motivation
for combining action and state comments to form the category of execution

narrative comments.

These comments imply that the program is performing the action because it is
in such a state. The comment in Figure 3.17 says that entering the else block
means that the command is bad, and so the program will die. It is rare for
an explicit linking word such as “because”, “since”, or “therefore” to be used,

but Figure 3.18 shows such an example.
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621 /* If path is empty, then we are at the end of the journey.
Therefore respect required stop distance. */
622  dprintf( "Planner forward path executing for %d\n", train->id );

Figure 3.18: Excerpt from a06/p3/src/userland/apps/train/planner.c

Connections to Programming Techniques

Execution narrative comments are related to some well-known programming
techniques. Indeed, the relationship is so strong that it is easily to confuse

them with the techniques they resemble.

Action comments resemble pseudocode, which has the logical structure of code
in terms of control flow and indentation, but the statements of which are writ-
ten mostly in English. Figure 3.19 shows a comment written in pseudocode,

which exemplifies the style of traditional pseudocode.

561 // if redacted can be reached without reverse
562 // go to redacted

563 // else

564 // go to "nearest" end without reverse

Figure 3.19: Excerpt from a02/p3/src/automatic mode.c

Many programmers are encouraged to write first in pseudocode, and then to
implement each statement of pseudocode with a block of actual code. If the
pseudocode is written as comments, it can be retained in the final version as

documentation [21].

With a flexible enough definition of pseudocode, all action comments are writ-
ten in pseudocode. However, it is curious that there is no counterpart to state
comments in any description of pseudocode that I have ever seen. The data
suggests that these state comments are part of the storytelling naturally used

by programmers.

State comments resemble assertions. An assertion is a program statement
which checks a condition assumed by the programmer to be true. If the con-

dition is found to be false while the program is running, then the program is
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usually halted with an error message, since proceeding further is dangerous
because the programmer’s assumptions have been violated. For example, the
state comment in Figure 3.20 is implemented by the assertion statement on

the next line.

848 // This should mean that there is no path from here to the destination.
849  assert(distances[lmLast.LandmarkNum()] == INT_MAX);

Figure 3.20: Excerpt from a01/p3/src/track.c

Here the unreachability of the destination has been encoded by a very large
distance. The assertion implements the meaning of the comment since it veri-
fies that there is no path. Without the assertion, if such a violation occurred,
it would not be detected. Many state comments are too ill-defined to become

assertions, however, as in Figure 3.21.

200 // Another kind of interrupt might have provoked this.

Figure 3.21: Excerpt from a01/p3/src/userevents.c

But assertions cannot completely replace state comments even when the mean-
ing is well-defined. Many well-defined properties are too expensive to compute
with current methods [15]. For example, the comment in Figure 3.22 could be
captured by an assertion, but this would involve too much calculation, likely

duplicating work already done by the program.

779  if(dir)
780 {
781 // Forward is optimal at this exact location.

Figure 3.22: Excerpt from a01/p3/src/track.c

Therefore state comments cannot always be replaced by assertions. However,
the goal of theorem proving research is essentially to create a better kind of

assertion which can replace all state comments, or at least those which are

well-defined.
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Summary

Comments that describe the execution of the program largely fall into two
types: those which describe the current state of the program, and those which
describe actions (changes in state). These comments refer to specific exe-
cutable statements in the code, although the referent of a comment cannot be
determined automatically. Execution narrative comments have connections to

the programming techniques of assertions and pseudocode.
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3.2.2 Clarification Comments

Clarification comments help the reader understand the meaning of a tricky

piece of code. A typical example is a comment which explains a magic number

in the source code, as in Figure 3.23.

113
114
115

// 0x4: Transmit interrupt
asm("tst r2, [#0x04)");

asm("bne uartl_xmit_ready");

Figure 3.23: Excerpt from a02/k4/src/kernel asm.c

The referent of a clarification comment is normally smaller than a complete

line of code. The comment in Figure 3.23 refers to the literal constant “#0x04”

on the next line. Sometimes the referent consists of many disconnected pieces

if there is repetition of what is being clarified, as in Figure 3.24.

© 0 N O

10
11
12
13
14
15

// Note:

#define
#define

#define
#define
#define
#define
#define

0x1B is ESC

ERASE_SCREEN
ERASE_LINE

CURSOR_HOME
CURSOR_TIME
CURSOR_SWITCH
CURSOR_SENSOR
CURSOR_COMMAND

"[2.] n
u[K n

"Cx1BH"
"\x1B)[1; 1H"
"\x1B)[2; 1H"
u[3; 1H"
"\x1B[15; 1H"

Figure 3.24: Excerpt from a05/k4/src/terminal.h

Interestingly, in both of these examples the string which occurs in the comment

does not literally match the referent:

versus “\x1B”.

“0x4” versus “0x04”, and “0x1B”

The breakdown of subcategories is shown in Figure 3.25. This table shows

that the use of clarification comments varies greatly by group. None of the

subcategories that I have identified are universal; each is absent from at least

one group. So, whether a group uses a certain kind of clarification comment

depends on their personal tastes.
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Code Base | Count | constant | name | end block | positional | arithmetic | other

Overall k4 100 25% 11% 52% 4% 3% 5%

Overall p3 345 49% 6% 23% 18% 1% 3%
A01/k4 15 53% ™% ™% ™% ™% 19%
A01/p3 79 19% 1% 1% 67% 1% 11%
A02/k4 24 38% 42% - 12% 4% 4%
A02/p3 34 35% 29% - 24% 6% 6%
A03/k4 2 - - 100% - - -
A03/p3 13 54% - 46% - - -
A04/k4 7 100% - - - - -
A04/p3 144 92% ™% 1% - - -
A05/k4 12 8% - 75% - 8% 9%
A05/p3 17 12% - 76% - 6% 6%
A06/k4 40 - - 100% - - -
A06/p3 58 - - 98% - 2% -

Figure 3.25: Proportions of clarification comment subcategories by code base
in the A-series

Constant Clarification Comments

Constant clarification comments give a name to a constant expression in the
code, as in Figure 3.23. The existence of such comments is surprising, given
that the programming languages used all have the ability to define named
constants. For the comment in Figure 3.23, a likely reason is that the GCC
inline assembly language syntax is arcane enough that the programmer was
unsure how to use a named constant as a literal operand. Indeed, I only
know the syntax from reading one of the programs in this data set. I cannot
imagine a similarly convincing reason for the comment in Figure 3.24, but this

is insufficient justification to assume that no such reason exists.

Clarification comments are more about the form of code than about its func-
tion. If a named constant were used in line 114 of Figure 3.23, the program
behaviour would be unaffected, but the comment would lose its referent, since
“#0x04” would no longer exist in the code. This example demonstrates how

clarification comments are sensitive to the surface characteristics of code, in
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contrast to execution narrative comments which describe code on a functional

level.

Name Clarification Comments

Name clarification comments explain the meaning of a named entity in the
code. Often this name is imposed by another programmer, and thus cannot
simply be changed, such as the GCC compiler option names clarified by the

comment in Figure 3.26.

4  CFLAGS = -g -fPIC -Wall -I. -I../include -mcpu=arm920t
-msoft-float -MMD -Wno-return-type

5 OPTIMIZE = -02

6 # -g: include hooks for gdb

7 # -c: only compile

8 # -mcpu=arm920t: generate code for the 920t architecture

9 # -fpic: emit position-independent code

10 # -Wall: report all warnings

11 # -MMD: make dependencies

12 # -Wno-return-type: ignore warnings about not having

returns for system calls

Figure 3.26: Excerpt from a02/k4/src/Makefile

End Block Comments

Many clarification comments have fairly explicit meaning that can be under-
stood mechanically. End block comments link the end of a statement block to

its beginning, as in Figure 3.27.
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104 // Set the next action
105 #ifdef RANDOM_ACTION

106 random_number (&action_seed) ;

107 action_number = action_seed %, 6;

108 #else

109 action_number = (action_number + 1) % 6;

110  #endif /* RANDOM_ACTION */

Figure 3.27: Excerpt from a03/p3/src/dumb user.c

This comment reminds the reader that the block ending on line 110 began
with the line “#ifdef RANDOM_ACTION”. Some programming languages have
features like this in their syntax, such as BASIC where each type of block
statement has a different end marker. When this is part of the programming

language, the compiler detects mismatches.

Positional Syntax Clarification Comments

Positional syntax clarification comments help the reader track the role of syn-
tax elements distinguished only by position. An example is given in Fig-
ure 3.28, which names the first four arguments of “UpdatePhysics”; Fig-
ure 3.29 shows the function prototype.

259  UpdatePhysics(

260 (timestamp - state->time), // time_delta
261 ti->v_before_a, // start_velocity

262 ti->end_velocity, // end_velocity

263 &delta_distance, // displacement

264 &ti->velocity,

265 &ti->acceleration,

266 &ti->jerk);

Figure 3.28: Excerpt from a02/p3/src/model.c

That the names match the prototype could easily be checked mechanically.
Indeed, several programming languages, such as Python, allow function call

arguments to be optionally named.
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8 void UpdatePhysics(

9 int time_delta,

10 double start_velocity,
11 double end_velocity,
12 double* displacement,
13 double* velocity,

14 double* acceleration,
15 doublex* jerk);

Figure 3.29: Excerpt from a02/p3/src/model.c

Other comments clarify the name of a structure member or array index in long

initializers, as in Figure 3.30.

641 struct A3CLIENTS {

642 int priority;

643 struct A3CLIENTARGS args;
644 } clients[] =

645 {

646 // Priority,{Times,Delays}
647 { -3, { 10, 20 } 1,
648 {-4, {23, 9 }1},
649 {-5, {33 6 }1,
650 { -6, {71, 3 12

651  };

Figure 3.30: Excerpt from a01/k4/src/testprogs.c

This comment clarifies that —3 is the priority of the first array member. Re-

¢

cent versions of C support using syntax like “.priority=-3" in structure

initializers, allowing this comment to be replaced by code.

An interesting feature of the comment in Figure 3.30 is the mimicry of the
programming language syntax. This is a major source of difficulty for auto-
matically distinguishing between commented-out code and comments written

by programmers as documentation.
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Arithmetic Clarification Comments

Arithmetic clarification comments express a calculation which produces a con-

stant in the code, as in Figure 3.31.

6 #define NUM_TASKS 128
7  #define GEN_BITS 25 // 32 - log(NUM_TASKS)

Figure 3.31: Excerpt from a05/p3/src/task.h

In principle, “25” here could be replaced by code resembling the comment
text. However, this may be prevented by limitations in the programming
language, for example if “GEN_BITS” must be a known constant at compile
time. Also, perhaps the programmer wants to see both the calculation and

the final result in the code.

On Automation

There is a temptation to call many of these comments “bad” because what
they express is not being checked by the compiler. However, this is true of all
comments! These comments are simply the best candidates for automation.
Also, in the execution narrative comments, some state comments could be
replaced with assertion statements, which are verified when the program is

run.

Summary

Clarification comments explain an aspect of the code that is particular to its
form. Nearly all of these comments could have their meaning automatically
verified, at least in principle. However, in some cases the programmers appear
to be deliberately avoiding the existing tools for automation. The different

kinds of clarification comments are particular to the habits of each group.
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3.2.3 Data Definition Comments

Data definition comments are simply comments which refer to a data defini-
tion. The typical example is a comment which elaborates a variable name;

two such comments are shown in Figure 3.32.

28  task_descriptor* active_task; // Active task fetched by scheduler
29  syscall_request active_request; // Requests sent from active task

Figure 3.32: Excerpt from a03/k4/src/redactedkernel.c

The first comment clarifies that the identifier name “active_task” means
the active task fetched by the scheduler. The second comment says that

“active_request” is the request from the task which is active.
This category applies to all data definitions, including:

e variable definitions (global and local),

function parameter definitions,

constant definitions (including definitions made with #define),

structure member definitions,

type definitions (struct, typedef), and
e enumeration definitions.

These are statements which bind a piece of (non-executable) code to an iden-
tifier name. They are treated together because similar patterns were observed

for all data definitions.

Figure 3.33 shows the breakdown into subcategories. The subcategories of
data definition comments are murky; many comments show multiple features.
Because they do this in very few words, it is unclear how to split them into
multiple comments, if this is even appropriate. However, there are general
trends in the additional information these comments provide. Owing to the
absence of cleanly divided subcategories, a more detailed breakdown is not

given.
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name expansion with
Code Base | Count | name expansion other content other
Overall k4 379 66% 6% 28%
Overall p3 769 64% 6% 30%
A01/k4 24 38% 25% 37%
A01/p3 65 31% 14% 55%
A02/k4 53 58% 8% 34%
A02/p3 72 46% 10% 44%
A03/k4 177 69% 6% 25%
A03/p3 331 68% 6% 26%
A04/k4 45 80% - 20%
A04/p3 121 75% 2% 23%
A05/k4 12 17% 17% 66%
A05/p3 58 2% 9% 19%
A06/k4 68 2% 1% 27%
A06/p3 122 67% 5% 28%

Figure 3.33: Proportions of data definition comment subcategories by code
base in the A-series

Name Expansion Comments

Name expansion comments give a longer version of the identifier name, as
in Figure 3.32. I consider the longer version to be the true name, and the
identifier to be an abbreviation. This is the only subcategory of data definition

comments that is clear enough to be isolated.

To reference a named entity in a programming language, the identifier must
be repeated without variation. Therefore, programmers are motivated to keep
identifiers short. However, longer names are often more meaningful. The
practice of using a short name as the identifier and providing the longer name

in a comment is a popular compromise as seen in the data.

The wording of these expanded names is unusual even for coding styles which
encourage long identifiers. The expanded names in Figure 3.32 are unlikely to

be identifier names. and Figure 3.34 shows a name which is even less likely.
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255 //how far we should have travelled in this time
256 int dist = O;

Figure 3.34: Excerpt from a04/p3/src/lib/train state.c

The expanded name begins with “how”, a word which is rarely found in iden-
tifiers. Indeed, “how” does not occur in any identifier name in the data set

except as part of the word “show”.

Identifier Names as Comments

Programmers freely choose the identifiers of language entities they define; the
content of the names is ignored by the compiler. Therefore, it is appropriate
to also consider identifier names in studying how programmers use natural
language in their code. However, for this project I study only the literal

comments.

Other Data Definition Comments

Many comments describe the units of a quantity, as in Figure 3.35.

40  int stopdist[NUM_LOGICAL_SPEEDS]; //mm
41  int stopdistsafe[NUM_LOGICAL_SPEEDS]; //mm

Figure 3.35: Excerpt from a04/p3/src/tasks/train_data.h

This comment clarifies that the stopping distances are measured in millimetres.
For the train project, values measured in physical units are common because

the programs interact with the physical world.

Other comments describe how to interpret coded values. Figure 3.36 provides

an example of such a comment.
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20 //0 = not reserved for this train,

INT_MAX = fully reserved for this train,
21 //any other value = that many mm reserved for this train
22 int length_reserved;

Figure 3.36: Excerpt from a04/p3/src/lib/route.h

This comment explains the meaning of special values, such as how the large
integer “INT MAX” is used for a track segment which is fully reserved, even
though the value of “INT MAX” (approximately 2.1 billion) is much larger than
the actual length of that track segment. Both of these comments resemble the
clarification comments seen earlier, and are perhaps just another manifestation
of them. Finally, some comments describe how the defined entity is used, as

in Figure 3.37.

67 //used if an event was triggered and no task was waiting
68 int too_slow;

Figure 3.37: Excerpt from a04/k4/src/kern/kern _globals.h

These comments may also explain why the defined entity exists in the first
place, and where in the code it is used. This is especially important if its use

is far away from its definition. Another example is provided in Figure 3.38.

124  int final_game_state;
// Final state the game ends up in...Only used by the UI

Figure 3.38: Excerpt from a03/p3/src/redacted.h
This comment also provides the expanded name, and is thus an example of a

name expansion comment with other content.

Summary

Comments referring to data definitions primarily give a longer version of the
identifier name. Many data definition comments also provide other information
about the defined entity, but they fail to divide cleanly into subcategories

because many comments provide several kinds of information.
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3.2.4 Sectioning Comments

Sectioning comments divide the code into logical units. A typical example is

a heading which groups together several statements, as in Figure 3.39.

49
50
51
52
53

/* Time */

#define TIME_USE_CLK

#define TIME_CLK_MODE

#define TIME_CLK_SRC

#define TIME_CLK_INITIAL
Figure 3.39: Excerpt from a06/k4/src/config.h

CLK_3
CLK_MODE_FREE_RUN
CLK_SRC_508KHZ
Oxffffffff

The breakdown into subcategories is given in Figure 3.40.

Code Base | Count | heading | end marker | divider

Overall k4 | 234 87% ™% 6%

Overall p3 446 88% ™% 5%
A01/k4 8 88% - 12%
A01/p3 9 89% - 11%
A02/k4 6 67% 33% -
A02/p3 18 2% 11% 17%
A03/k4 28 100% - -
A03/p3 51 100% - -
A04/k4 76 82% 18% -
A04/p3 193 85% 14% 1%
A05/k4 2 100% - -
A05/p3 6 100% - -
A06/k4 114 88% = 12%
A06/p3 169 89% 1% 10%

Figure 3.40: Proportions of sectioning comment subcategories by code base in
the A-series

Every comment in the data fits well into one of these three subcategories.

Heading comments dominate, and are the only subcategory occurring in every

code base.
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Heading Comments

The comment shown in Figure 3.39 is an example of a heading comment.
The text of heading comments is usually a noun phrase. Compared to other
comments, heading comments provide very little information. For example,
execution narrative comments often contain enough information to reconstruct
their referent, but heading comments focus on a single aspect that ties the

referent together.

Heading comments often occur as a sequence of related headings, as in Fig-
ure 3.41. They may even form a hierarchy, as in Figure 3.42, where the “VIC”
sections have subsections such as “COM1”. Programmers often indent hierar-
chical structures in code to show the hierarchy. In contrast, heading comments
are rarely indented in this way; indeed they are not in Figure 3.42. So, even
for these straightforward comments, determining the referent requires under-

standing the meaning of the comment text.
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76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

// The parameters of a level
typedef struct

{

// User Parameters

int user_train_id; // ID of the train that the user uses
int user_speed; // Speed the train can go at

// Guard Parameters

int num_guards; // Number of guards for the level

int guard_intel [MAX_GUARDS]; // Intelligence level of each guard
int guard_train_id[MAX_GUARDS]; // Train used by each guard
int guard_speed[MAX_GUARDS]; // Speeds of the guards

// Treasure Parameters

int num_treasures; // Number of treasures

int treasure[MAX_TREASURES]; // Locations of the treasures
// Time Parameters;

int minutes;

int seconds;

int tenth_seconds;

} level_definition;

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Figure 3.41: Excerpt from a03/p3/src/redacted.h

/* VIC 1 x/
/* Clock 1 */
interrupt_init_one( VIC1_BASE, O, INTERRUPT_SRC_TC1UI );

/* COM1 */
interrupt_init_one( VIC1_BASE, 1, INTERRUPT_SRC_UART1RXINTR1 );
interrupt_init_one( VIC1_BASE, 2, INTERRUPT_SRC_UART1TXINTR1 );

/* COM2 *x/
interrupt_init_one( VIC1_BASE, 3, INTERRUPT_SRC_UART2RXINTR2 );
interrupt_init_one( VIC1_BASE, 4, INTERRUPT_SRC_UART2TXINTR2 );

/* VIC 2 */

/* COM */

/* General interrupt must be lower priority than RX/TX */
interrupt_init_one( VIC2_BASE, O, INTERRUPT_SRC_INT_UART1 );
interrupt_init_one( VIC2_BASE, 1, INTERRUPT_SRC_INT_UART2 );

Figure 3.42: Excerpt from a06/k4/src/interrupt_handler.c
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62
63
64
65
66
67
68
69

End Marker Comments

End marker comments explicitly mark the end of another comment’s referent,

as in Figure 3.43.

27
28
29
30

31
32
33

//helper functions

(Void draw_tab_outline( );
void draw_entry( struct train_display_data* DATA, int i );
void update_entry( struct train_display_data* DATA, int i,
struct train_position_output_message* msg )
int get_entry_num( struct train_display_data* DATA, int train_num );

Wwoid initialize_display_data( struct train_display_datax DATA );

J

//end of helpers

Figure 3.43: Excerpt from a04/p3/src/tasks/user_train display_tab.c

Based on the hypothesis that programmers only write necessary comments,
I conclude that programmers themselves believe that some comments have

ambiguous referents.

Divider Comments

Some sectioning comments, such as the comment in Figure 3.44, have no En-
glish text at all!

#define SYS_VIC_MASK(intno) (1 << (intno % 32))
#define SYS_VIC_BASE(intno) ((intno / 32) 7 SYS_VIC2 : SYS_VIC1)

LIVILLII7177077 777707777 77707777777777777777777777777777777777777777/777/77//77/

#define TIMER1_BASE 0x80810000 // 16-bit timer
#define TIMER2_BASE 0x80810020 // 16-bit timer
#define TIMER3_BASE 0x80810080 // 32-bit timer

Figure 3.44: Excerpt from a01/k4/src/ts7200.h

These are divider comments, devoid of linguistic content. Thus these com-
ments could be viewed as an alternative to whitespace. Some resolve this by
considering all (unnecessary) whitespace as a kind of comment. For example,

Scowen and Wichmann [26] define a comment as “characters which have no
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significance [to the compiler|”, which certainly includes all whitespace (except
for whitespace required to separate adjacent tokens). As before, I persevere

with the programming language’s definition of what constitutes a comment.

Summary

Sectioning comments separate into subcategories more cleanly than any other
category. There are simply three types: heading comments which group to-
gether a section of code, end marker comments which mark the end of a
comment’s referent, and divider comments which contain no actual text. All

sectioning comments have minimal linguistic content.
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3.2.5 Development Narrative Comments

Development narrative comments describe the development of the program’s
source code. A typical example is a reminder that work is unfinished, as in
Figure 3.45.

25 // TODO Make this faster
26 for ( int i = NUM_PRIORITIES - 1; i >= 0; i-- ){

27 if ( !queue_empty( &queues[i] ) ){
28 priority = i;

29 break;

30 }

31}

Figure 3.45: Excerpt from a05/k4/src/kern/main.c

This comment states that there is something “to do”; in this case the following

code must be made faster.

Development narrative comments often explicitly mention the programmers

or talk directly to the reader, as seen in Figure 3.46.

309 //Pointer for ungodly pointer copy NEVER DO THIS AGAIN
310 //(If you do decide to do this again,

at least copy this warning message)
311 rrmsg.route = &DATA->route_buffer;

Figure 3.46: Excerpt from a04/p3/src/lib/train_state.c

Development narrative comments tell how the program has changed, or will
change, or should change. Like execution narrative comments, these comments
are part of a story, but the setting is different. Execution narrative comments
talk about events that happen during a program run. Development narrative
comments talk about events in the real world, the world in which the program

is being written.

Figure 3.47 shows the major subcategories of development narrative comments.
Most consistently popular and universal are “to do” comments; the other

subcategories vary strongly from group to group.
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Code Base | Count | to do | warning | instruction | attribution | other

Overall k4 90 38% 14% 33% 6% 9%

Overall p3 190 46% 19% 22% 3% 10%
A01/k4 24 46% 33% - 4% 17%
A01/p3 52 33% 40% 4% 4% 19%
A02/k4 4 50% - 25% 25% -
A02/p3 14 86% - % % -
A03/k4 1 - - 100% - -
A03/p3 10 30% 40% 20% - 10%
A04/k4 25 36% 4% 52% 8% -
A04/p3 47 53% 2% 38% 4% 3%
A05/k4 21 14% - 1% 5% 10%
A05/p3 43 40% 5% 40% 2% 13%
A06/k4 15 60% 27% - - 13%
A06/p3 24 54% 33% 4% - 9%

Figure 3.47: Proportions of development narrative comment subcategories by
code base in the A-series

“To Do” Comments

Most common are annotations of unfinished work, as in Figure 3.45. Such
comments almost always contain the string “T0OD0”, and so I call them “o
do” comments, but Figure 3.48 shows another phrasing. Many programmers
use a consistent tag such as “TODO” so that it is easy to search for all such

comments when checking for unfinished work [21].

1166  // WARNING: Can add a check here regarding
the center of the track later

Figure 3.48: Excerpt from a03/p3/src/redacted.c

Warning Comments

Warning comments mark code which is less than ideal, but give no indication
that it should be changed. Perhaps it cannot be changed, as the comment in

Figure 3.49 implies.
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129  // Bad stuff seems to happen to RedBoot when I don't do this.
130 *SYS_VIC_INTENCLR(SYS_VIC1) = OxFFFFFFFF;
131  for(volatile int i = 0; i < 10000; i++);
132 *SYS_VIC_INTENCLR(SYS_VIC2) = OxFFFFFFFF;

Figure 3.49: Excerpt from a01/k4/src/system.c

Here the programmer expresses their feelings about the code: they are skeptical
that the referent code should even exist. These value judgements are almost
always negative in the data set; programmers take for granted that most code

is good.

Instruction Comments

Instruction comments provide helpful information to future programmers or

maintainers, as in Figure 3.50.

23 # Add any subdirectories that need to be made here
24  SUBDIRS = kern 1lib usr track

Figure 3.50: Excerpt from a05/p3/src/Makefile

This comment tells future programmers that any new subdirectories with files
to be built must be added to the “SUBDIRS” list. These comments retain
knowledge from the design process, which may help new readers understand

the intentions of the original programmers.

Attribution Comments

Attribution comments indicate that code was taken from elsewhere, as in Fig-
ure 3.51.
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271 // Copied from
272  // http://graphics.stanford.edu/ seander/bithacks.html#IntegerLoglookup
273  int FirstBitSet(unsigned int flag, int* LogTable256) {

Figure 3.51: Excerpt from a02/k4/src/kernel asm.c

This kind of comment may be overrepresented in the data set since the code is
from an academic environment, and academic integrity requires the students

to clearly mark code written by others.

Commenting as a Social Activity

Some comments serve primarily a social function; these comments have little
to do with the code. This is only natural because the programmers working
on a given software project form a community, and their primary interaction

as a part of this community occurs via the code base itself [20].

Some of these utterances have little content because their primary purpose is
social grooming [12]. These comments serve to reinforce the bonds between

the group members. Figure 3.52 is a good example of this social grooming.

54 REDACTED_CONDUCTOR_RT_END = 21, // Conductor done rt'ing
55 REDACTED_BOMB = 22 // Someone set us up the bomb
56 } redacted_code;

Figure 3.52: Excerpt from a03/p3/src/redacted.h

This comment makes a certain cultural reference associated with the word
“bomb”, but is otherwise unrelated to the code. Mawler calls such comments
identity-oriented, as opposed to comments which focus on the programming
task. Each individual comment falls somewhere on the continuum between
these two extremes. For example, some comments in the data show a playful

nature, but also have a clear task-oriented meaning, as in Figure 3.53.
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3 //NEVER USE THIS TASK!!! MWAHAHAHAHAH!!!!

Figure 3.53: Excerpt from a04/p3/src/tasks/system_extra_stack.c

The amount of identity-orientation, and the form it takes, naturally depends
heavily on the individuals. Some group norms require never writing comments
in a playful tone. The extent of identity-orientation in the data set may be

the result of assignments being done in pairs.

For a more thorough treatment of this topic, please see Mawler’s thesis [20].
However, since it is important to recognize the human element in discussions of
programming behaviour, selected examples are presented in Figures 3.54-3.64

without further commentary.

Summary

Development narrative comments discuss the development of the code itself.
This is where the programmers criticize the code, give advice to those who

will follow, and express their wishes for the future.
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380 // On your mark! Get set! GO!

Figure 3.54: Excerpt from a03/k4/src/user.c

36 // TODO: I think there may be a bug somewhere here. (helpful, eh?)

Figure 3.55: Excerpt from a01/p3/src/userlib.h

303 //TODO:WOWOWOWOW

Figure 3.56: Excerpt from a05/p3/src/usr/shell.c

365 for(volatile int i = 0; i < B4; i++)

366 {
367 __asm__("NOP"); // AHHHHHHHH!!!!tit1t]
368 }

Figure 3.57: Excerpt from a01/k4/src/userevents.c

765 // Estimate a stop distance for the train based on some beautiful,
complex mathematics

Figure 3.58: Excerpt from a03/p3/src/train.c

7 #include <devices/clock.h>
/* Pretty hacky here, don't do this in a normal app */
8 #include <context.h>

/* So damn hacky, I can't go to heaven */

Figure 3.59: Excerpt from a06/k4/src/userland/apps/srr_timing/main.c
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367 //Do we have enough route? If not, yell at the route
server! Yelling is therapeutic, and likely to make
368 //people like you!

Figure 3.60: Excerpt from a04/p3/src/tasks/user_train.c

223 else // Nada persona esta escuchando para este,
most likely este es informacion redundante

224 {

225 // Extract the input character from the UART

226 irq_status2 = *(int*) (UART1_BASE + UART_DATA_OFFSET);
227 }

Figure 3.61: Excerpt from a03/k4/src/redactedkernel.c

93 //shut'er down

Figure 3.62: Excerpt from a04/p3/src/tasks/user_train command dispatcher.c

2091 if (trainStateNo == ATTRIBUTION_IGNORE)

2092 {

2093 // I can do that!

2094 }

2095 else if(trainStateNo == ATTRIBUTION_UNKNOWN)
2096 {

Figure 3.63: Excerpt from a01/p3/src/trackingserver.c

262  default: // Mystery uh-oh case

Figure 3.64: Excerpt from a03/p3/src/redactedkernel.c
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3.2.6 Prologue Comments

Prologue comments give introductory remarks before a major section of code.
The typical example is a function prologue comment, which precedes a function
body and can include the function’s purpose, return value, constraints on

input, or even implementation details. Figure 3.65 gives an example.

/**

go to the destination, assuming we start at the given location.

* X ¥ *

PATHEVENT_SENSOR:
the next thing to happen is a sensor. ie, you don't need to

distance, returned in event.

of distance, returned in event.

If the distance pointer is provided, the estimate distance remaining is
placed there.

* X X X X X ¥ X X *

*%/

PATHEVENT Destination::GetNextEvent(Location &location, int stoppingDistance,

bool forward, int *event, int *distance, int *pBuf)

Figure 3.65: Excerpt from a01/p3/src/track.c

Consider the comment in Figure 3.66 which establishes a naming convention.

42 /%

43 *

44 * SENDER ALWAYS REFERS TO THE TASK WHICH CALLED SEND
45 *

46 */

Figure 3.66: Excerpt from a04/k4/src/kern/syscall handlers.c

The operating system supports a communication mechanism which allows one

task to send a message to another task, which receives it. The receiver must
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Returns a PATHEVENT corresponding to the next thing that should be done to

do anything before you hit a particular sensor, which is returned in event.

PATHEVENT_REVERSE: you need to initiate a reverse after a certain amount of

PATHEVENT_STARTSTOP: you need to initiate a reverse after a certain amount



then reply to the sender. This comment removes the potential for confusion,
since otherwise they may speak of the receiver sending a reply. The referents
of such comments are somewhat vague and all-encompassing: for this example

the referent includes any occurrence of the word “sender” in the file.

The subcategory breakdown is given in Figure 3.67. As with the data defini-
tion comments, many categories show multiple features, so the subcategories

presented here are taken from the clearest trends.

complex
Code Base | Count | function summary | file | function prologue | other
Overall k4 475 57% 23% 15% 5%
Overall p3 864 64% 16% 16% 4%
A01/k4 41 24% ™% 41% 28%
A01/p3 7 30% 4% 43% 23%
A02/k4 29 41% - 52% ™%
A02/p3 35 46% - 51% 3%
A03/k4 237 78% 16% 5% 1%
A03/p3 422 81% 14% 5% < 1%
A04/k4 80 29% 49% 20% 2%
A04/p3 196 52% 21% 25% 2%
A05/k4 26 8% 7% 4% 11%
A05/p3 32 6% 72% 9% 13%
A06/k4 62 60% 16% 19% 5%
A06/p3 102 69% 13% 12% 6%

Figure 3.67: Proportions of prologue comment subcategories by code base in
the A-series
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Function Summary Comments

Function summary comments refer to an entire function body and give a single

sentence summary of the function’s effect. An example is shown in Figure 3.68.

38 // Print cpsr, then the current state, and interrupt status.
39 void PrintCpsr() {

Figure 3.68: Excerpt from a02/k4/src/common.c

These simpler prologue comments resemble execution narrative comments.

In C, a function definition comes with a function prototype which provides just
the types of the function’s arguments and return value so that other source
files can use the function. Comments referring to a function prototype, such
as the comment in Figure 3.69, are also counted as prologue comments even

though a function prototype is not a major section of code.

46  /* Read the difference of clock cycles between clock reads */
47  int clk_diff_cycles( Clock* clk, uint* val );

Figure 3.69: Excerpt from a06/p3/src/devices/clock.h

This is justified by how their code was written. For each function, the imple-
menter and user are one and the same, since each group is the only user of
the operating system they write. Therefore, there is little difference between
a comment placed by the function prototype and a comment placed by the

function body.

File Prologue Comments

File prologue comments refer to an entire file, often following a fixed template
which is filled in. These templates are particular to the group; an example is

shown in Figure 3.70.
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// Name(s) Redacted

// Created by Name(s) Redacted

// Created 2011/05/12

// Last updated 2011/06/07

// This file is a simple task for testing context switches

a s W N -

Figure 3.70: Excerpt from a03/k4/src/user.c

Not all file prologue comments follow an elaborate template: some summarize

the file’s contents in a single sentence, such as in Figure 3.71.

1 /* Simple doubly linked circular list implementation */
2 #ifndef _LIST_H_
3 #define _LIST_H_

Figure 3.71: Excerpt from a06/p3/src/1ib/list.h

Complex Function Prologue Comments

The function prologue comment shown earlier in Figure 3.65 is fairly elaborate,
but only describes the effect and use of the function it refers to. However, pro-
logue comments often show features from other categories. For example, the
boxed sentence in Figure 3.72 would be classified as a development narrative

comment if it occurred alone.

75 // Turn on the instruction cache

76 // |NB: this function is here for convience.
It should NOT be called by user tasks!
77  void enable_icache ()

78 Ao

Figure 3.72: Excerpt from a03/k4/src/syscall.c

This subcategory of complex function prologue comments is a “catch-all” for
these multi-featured comments. Further analysis would require classifying the

individual sentences of each comment separately.
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Summary

Prologue comments are comments which precede a major section of code. Most
of these comments summarize the effect of a function in one sentence, and
are thus similar to execution narrative comments. Other prologue comments
summarize an entire file. Analyzing the remaining comments in more detail

requires looking below the level of individual comments.
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3.3 Reflections on the Taxonomy

One problem with rigid classification of comments is that many comments
show features from multiple categories. Even so, my classification succeeded
for most of the comments in the data set: 96% of the comments were classified
into one of the six basic categories, and 87% of the comments were further
classified into a definitive subcategory. That is, most comments have a single

purpose. The most robust trends I observed are:

e Execution narrative comments, which describe the effect of executing

the code, the current state of program execution, or both.

e Clarification comments, which clarify the specific form of the code, and

whose meaning can often be checked mechanically.

e Sectioning comments, which group statements under a heading, clarify

the division of code, or mark the referent of a comment.
e Comments which provide the expanded form of an identifier name.

e Comments which indicate that work is unfinished, commonly containing
the string “T0ODO”.

Data definition and prologue comments often exhibit multiple features, which
makes them difficult to classify further. This may be a characteristic of com-

ments which refer to definitions.

What is a Comment?

There may be benefit in broadening the definition of what counts as a com-
ment. The purpose of many comments overlaps with other language features
where variation in expression is permitted, such as whitespace and identifier

names.

Also, some string constants serve similar purposes to comments seen in the
taxonomy. For example, Figure 3.73 shows a string containing an error mes-

sage.
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34 case REQ_UPDATE:

35 // Reply right away, minimize notifier delay
36 reply( tid, &request, 0 );
37 assert( tid == notifiertid,

"clockserver: Notified by wrong task\n" );
38 time += request.value;
39 break;

Figure 3.73: Excerpt from a05/k4/src/lib/usr/clockserver.c

This error message serves the same purpose as a state comment: a state com-
ment saying the same thing would be redundant here. Moreover, this error

message is part of an assertion, and assertions overlap with state comments.

Any part of the code not constrained by the programming language contains
free personal expression. Depending on what aspects of behaviour are being
studied, there may be benefit in being more inclusive in the definition of a

comment.

Conclusion

This chapter examined commenting behaviour by walking through a detailed
taxonomy of comments found in the pilot data set. This taxonomy is a starting
point for developing a real understanding of what comments programmers

write, and what they hope to accomplish by writing those comments.
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Chapter 4
Quantitative Observations

Quantitative analysis gives a more objective perspective on programming be-
haviour. Testable hypotheses can be formed using tools from statistics. How-
ever, these tools apply only to aspects of the data that can be quantified.
Therefore, this chapter takes a higher level view. The analysis reveals pat-

terns which suggest unexpected regularities in programming.

4.1 Commenting by File

First the data is examined at the granularity of the individual file, looking at
variation over two factors: group and milestone. Each file was written by an
individual group; inter-group variation reveals differences between program-
ming teams. Each file was also written for a specific assignment milestone,

which reveals differences as the programming task varies.

Four basic file types are distinguished, as shown in Figure 4.1. They account
for differences in file content which I noticed were affecting the analysis. I chose
these file types to make the most important distinctions without excessively

subdividing the data.
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Type

Description

Programming Languages

implementation

C source file, with a “.c” extension,
containing the definitions of func-
tions, that is, the actual code exe-
cuted by the program.

C (occasionally C++), may
contain some assembly lan-
guage code

header

C source file, with a “ .h” extension,
containing type definitions and func-
tion prototypes for the corresponding
“.c” file.

C (occasionally C++)

assembly

Source file written in assembly lan-
guage; directly compiled to object
code.

ARM™ assembly language

script

Support code written in other lan-
guages, mostly to support the compi-
lation process, or for offline process-
ing of data pertaining to the model
train set.

Make, GNU linker
language, Shell scripts (sh,
bash), Matlab, Perl,
Python, Racket, Ruby

Figure 4.1: The four basic types of source code files

Each file is divided into lines of code based on line break characters entered

manually by the programmers. This representation can differ from the dis-

played code when line wrapping is used. For this part of the analysis, mea-

surements of the data are all of the form: “number of lines in the file satisfying

such-and-such a property”, for example:

e the total number of lines in the file,

e the number of nonblank lines in the file, and

e the number of commented lines, that is, the number of lines containing

part of a comment.

These quantities all have the same units (lines of source code), and can thus

be compared to one another.
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4.1.1 Measuring the Size of Code

The histogram in Figure 4.2 shows the distribution of total line count for each

file in the data.
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Figure 4.2: Distribution of source file line count in the A-series

These graphs are hard to interpret because the data bunches up at small values.
Thus, data should be transformed before it is graphed, primarily so that it fills
the available area [7]. In Figure 4.2 almost all of the space is wasted because

it communicates nothing.

Transforming the Data

The numeric measurements most common for this data are what Tukey calls
counts: nonnegative integer values obtained by counting occurrences of some-
thing in the data [28]. Examples include the number of lines in a file, the
number of letters in a word, and the number of words in a sentence. Re-
expressing such data by taking its logarithm or square root is generally appro-
priate [28,30]. These are rules of thumb developed by experienced practitioners

of exploratory data analysis.

There is a continuous family of power transformations, called Box-Cox trans-

formations [30]. The Box-Cox transformation has a continuous parameter p,
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the exponent of the transformation. Both the logarithm and square root are
part of this family, because if p = 0, then it takes the logarithm, and if p = %,
it takes the square root (up to a scaling factor). Other values of p produce

other power transformations.

This parameter p can be manually optimized by watching the transformed
data change as p is varied. By doing so, I found the logarithm to be the most
effective transformation for this data. The histogram in Figure 4.3 shows the

line count data transformed by a logarithm, giving a nice bell curve shape.
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Figure 4.3: Distribution of source file line count in the A-series, transformed by Log

Some technical details about my logarithm transform are worth mentioning.

The transformation actually used is a function I call Log, defined by:
Log(z) = logy(x +1).

Log is an increasing bijective map from [0,00) to itself. That is, if x is a
nonnegative real number then so is Log(z). Log also preserves the ordering
of the data points. The input is shifted by one before taking the logarithm
because the data has many zero values which would otherwise be discarded
(since the logarithm of zero is undefined). This adjustment is a common

practice known as “starting” the count [28].
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I chose the base two logarithm because it makes graphs easier to interpret
than either base e (whose powers are difficult to compute), or base 10 (whose
powers are spread too far apart for the scale of the data). The choice of base
does not affect the analysis as the data itself is unchanged, except for a scaling

factor.

4.1.2 Distribution of File Sizes

Studies comparing different size metrics for a code base have failed to find a
metric which outperforms simple metrics such as statement or line count [2,19].
This justifies counting the number of lines of code to measure the size of each
file.

Figure 4.4 shows a normal QQ plot of the Log-transformed data, separated
by milestone. This plot displays the data compared to what is expected of
a standard normal distribution. The points in this QQ plot lie on a straight
line when the untransformed data has a lognormal distribution. It is much
easier to recognize subtle deviations from normality on a QQ plot than on a

histogram.
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Figure 4.4: Normal QQ plots for Log line count in the A-series
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Graphically, the Log-transformed data is well approximated by a normal dis-
tribution, especially centrally. What might be anomalies at low values are
of little concern, since they are likely artifacts of the discrete nature of the
data. There are not enough points at high values to come to strong conclu-
sions merely by looking. Ignoring low values, the fit looks very good for the
p3 milestone, and only a single point for the k4 milestone deviates from the
line, which is easily attributable to sampling error. The R values shown in
Figure 4.4 are a “goodness of fit” measure. I eschew hypothesis tests for nor-
mality because they are too sensitive to small amounts of non-normality in the
data.

These observations justify a simple model of software development, where lines
of code are added at (uniformly) random locations in the code. In this model,
each file receives additions proportional to its size. According to Gibrat’s rule
of proportionate growth [27], dynamic processes with this property naturally

give rise to lognormal distributions.

Factor Analysis

An analysis of variance (ANOVA) performed on the milestone, group, and file
type shows that all three factors have a significant effect on Log line count.
The results of the ANOVA are reported in Figure 4.5. Asterisks indicate p

values significant at the 0.05 level.

df | sum of squares | mean square F P
milestone | 1 11.695 11.695 7.271 0.007 *
group 5 114.775 22.955 14.273 | < 0.001 *
file type 3 947.955 315.985 196.468 | < 0.001 *
error 878 1412.112 1.608
Total 887 2486.538

Figure 4.5: ANOVA summary for Log line count in the A-series

Tukey post-hoc comparisons are shown in Figure 4.6. The levels of the features
are in decreasing order by sample mean so that each cell has the alternative

hypothesis that the column label has greater mean than the row label.
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implementation | assembly script

assembly < 0.001 *

script < 0.001 * 0.991

header < 0.001 * < 0.001 * 0.001 *

A01 A03 A05 A02 A04
A03 0.799

A05 | < 0.001 * 0.016 *
A02 0.001 * 0.046 * 1.000
A04 | <0.001 * | < 0.001 * 0.893 0.954
A06 | < 0.001 * | < 0.001 * 0.251 0.478 0.848

Figure 4.6: Tukey post-hoc comparisons for Log line count in the A-series

Implementation files are the longest (p < 0.001), and header files are the
shortest (p < 0.002). The difference between assembly and script files is not
significant. Groups A0l and A0O3 write longer files than the other four groups
(p < 0.05). Other differences are not statistically significant.

Figure 4.7 shows normal QQ plots for each code base individually. No group
shows significant deviations from the behaviour for the data set as a whole,
which suggests that the distribution of file sizes is independent of individual
differences. The choppy appearance especially visible in the graphs for A02/k4
and A03/k4 is an artifact of too few sample points, which can be verified by
looking at normal QQ plots for small random samples from a normal distri-

bution, which often have a similar appearance.

Figure 4.8 shows normal QQ plots for each file type. Only the script files
appear to deviate from lognormality, but again there are too few files to be

conclusive.
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Figure 4.7: Normal QQ plots for Log line count in the A-series, by code base
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Figure 4.8: Normal QQ plots for Log line count in the A-series, by file type

74



Location and Scale Parameters

The QQ plots show that line count has approximately the same distribution
in each code base, varying only in location and scale. The natural location
and scale parameters for a lognormal distribution are its geometric mean and
multiplicative standard deviation [18]. The geometric mean p* is the untrans-
formed mean of the Log-transformed data, and is easier to comprehend since
it is expressed in the same units as the original data. This value p* can be

thought of as the size of an “average” file.

The multiplicative standard deviation * is equal to 27, where o is the standard
deviation of the transformed data. It is a unitless multiplicative factor, and
is analogous to the standard deviation of a normal distribution. For a normal
distribution with mean p and standard deviation o, approximately 68% of the
values lie within one standard deviation of the mean, and approximately 95%

of the values lie within two standard deviations of the mean:

w—20 w—o W w+o W+ 20
° ° ° ° °
— ~68% —
| ~ 95% |

For a lognormal distribution, approximately 68% of the values fall between
w*/o* and p* - o*, and approximately 95% of the values fall between p*/(c*)?
and p* - (0*)% This rule gives a sense of values typical of the distribution.
In the diagram below, ¢* = 1.5, to show a typical example of the skewed
appearance of a lognormal distribution.

* *

f f .

(0*)2 ; L M* . U* M* . (0,*)2
° ° ° ° °
— ~68% ——]
— ~95% |

Figure 4.9 tabulates the estimated parameters for the lognormal distributions
fit to the data.
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kd p* | kdo* | p3u* | p3o*

Overall 56 lines | 3.0x 67 lines | 3.3x
Group AO1 | 85 lines | 3.0x | 103 lines | 3.3x
Group A02 | 52 lines | 3.6x 63 lines | 3.9x
Group A03 | 86 lines | 2.5x 86 lines | 3.1x
Group A04 | 50 lines | 2.6x 68 lines | 3.1x
Group AO05 | 51 lines | 2.9x 62 lines | 3.4x
Group AO06 | 46 lines | 2.9x 52 lines | 3.1x

Figure 4.9: Parameters for the lognormal distributions fit to line count in the
A-series

First, o* is quite large; for milestone k4, the above rule says that 95% of the
files span the range from 6 to 500 lines, which is a wide range of file sizes. The
values of ¢* for the data capture this large size disparity, and indeed they are
larger than normally found in nature: a study of the lognormal distribution
across various branches of science found that typical values of o* are between

one and two [18].

Both parameters appear to vary from one code base to another. This is some-
what intriguing; ¢* is thought of as a qualitative parameter, and is sometimes
found to not vary with the individual [18]. However, each code base has few
sample points, so the ability to estimate ¢* for each code base is too weak to

rule out the possibility that the underlying value is the same for all groups.

For example, there are only 43 files in code base A01/k4. The measured
multiplicative standard deviation for a sample of this size from a lognormal
distribution with ¢* = 3.0 falls between 2.4 and 3.6, approximately 95% of the

time. So, the measured value has less than one digit of precision.

This idea is given more rigour by the bootstrap confidence interval [31]. Boot-
strap methods have the advantage of being unaffected by deviations from log-
normality in the data. Figure 4.10 gives the 95% bootstrap confidence intervals

for the o* estimates.
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k4 o* p3 o*

Overall 2.77x-3.18x | 3.12x-3.57x
Group A01 | 2.41x-3.62x | 2.81x-3.95x
Group A02 | 2.87x—4.47x | 3.23x—4.79x
Group A03 | 2.12x-2.93x | 2.56x—3.69x
Group A04 | 2.30x-2.93x | 2.70x-3.51x
Group A05 | 2.39x-3.66x | 2.79x-4.18x
Group A06 | 2.60x-3.29x | 2.83x-3.52x

Figure 4.10: 95% bootstrap confidence intervals for the multiplicative standard
deviation estimates for line count in the A-series

Within a milestone, each pair of confidence intervals overlap, which means

that the observed variation in estimates of o* is not statistically significant.
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Nonblank Lines of Code

Excluding Blank Lines

The lognormal distribution fit worsens if blank lines are excluded from the line
count. This suggests that complicating the definition adds more noise to the
data, which justifies my preference for simpler measurements at this stage of

the analysis.

Furthermore, the plots in Figure 4.11 compare the line count excluding blank
lines to the total line count. The left plot is shown on the scale of the data with

linear regression, and the right plot is shown on Log scale, with Log regression.

Total Lines of Code
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Total Lines of Code Log Total Lines of Code
Figure 4.11: Nonblank versus total lines of code in the A-series

Owing to the discrete nature of the data, many values are exactly equal, and
would overlap completely if plotted directly. This would conceal the true
density of the data. Therefore, the points have been jittered, that is, moved

by a small random amount before plotting [7].

The plots in Figure 4.11 show that the nonblank line count is so highly cor-
related to the total line count that there is little difference between the two.
This redundancy justifies ignoring the nonblank line count since it provides

little additional information.
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4.1.3 Distribution of Comments by File

Figure 4.12 gives the normal QQ plots for the number of commented lines
of code in each file. The main difference is that 17% of the files have no
comments, which truncates the distribution to the left. Otherwise, the overall
distribution is also lognormal. This suggests that code and comments grow in

qualitatively similar ways.
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Figure 4.12: Normal QQ plots for Log commented line count in the A-series

Owing to the truncation, the lines in Figure 4.12 are fit by ignoring all data
points representing zero values. These points are also ignored when computing

the R value which measures the quality of fit.

Factor Analysis

The ANOVA for Log commented line count is given in Figure 4.13. Zero
values are excluded so that the input to the ANOVA is closer to a normal

distribution.
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df | sum of squares | mean square F P
milestone | 1 2.993 2.993 1.574 0.210
group 5 238.341 47.668 25.075 | < 0.001 *
file type 3 119.435 39.812 20.942 | < 0.001 *
error 730 1387.765 1.901
Total 739 1748.534

Figure 4.13: ANOVA summary for Log commented line count in the A-series

Here the milestone effect is not significant, but group and file type are still

significant factors. Figure 4.14 shows the post-hoc comparisons.

implementation | assembly script
assembly 0.970

script 0.123 0.579

header < 0.001 * 0.013 * 0.490

A03 A02 A04 A01 A05
A02 0.013 *
A04 | < 0.001 * 1.000
A01 | < 0.001 * 0.998 1.000
A05 | < 0.001 * 0.997 1.000 1.000
A06 | < 0.001 * 0.001 * | < 0.001 * | < 0.001 * | < 0.001 *

Figure 4.14: Tukey post-hoc comparisons for Log commented line count in the

A-series

Header files have fewer comments than both implementation and assembly

files (p < 0.02). Group A03 writes the most comments (p < 0.02), and group

A06 writes the fewest comments (p < 0.002).

Figure 4.16 shows the breakdown by file type; no large deviations from lognor-

mality are visible. Figure 4.15 shows the breakdown by code base. In the case

of code base A02/k4, the median data value is actually zero! Here most groups

are similar to the overall picture, although group A02 has a higher proportion

of files without comments. Also, every single source file written by group A03

has at least one comment.

80



AO1/k4 (43 files) A01/p3 (69 files) A02/Ka (37 files) A02/p3 (48 files)

25 1R =98.2% 25 1R =99.1% . 25 1R =99.1% 25 1R =99.0%
63 63 63 63
15 15 15 15 |
3 3 3 3
0 e 0 o ooo 0 e o ooocoo 0o o ooo
A03/k4 (44 files) AO03/p3 (65 files) A04/ka4 (77 files) A04/p3 (123 files)
25 1R = 99.4% 1023 1R = 99.1% % 1R =98.6% . 25 1R =99.4%

63 o
15
15 A
3
34
04 04 0 e 0 e o
AO05/k4 (60 files) A05/p3 (82 files) A06/k4 (100 files) A06/p3 (140 files)
8 1R = 92.0% 102 1R = 98.3% % 1R = 98.6% ° 25 1R =98.7%
3 63 o °
15 15
15 A
34 34
34
0 - o/ o ©oooccxmm 0 e oo 0 e oo

Figure 4.15: Normal QQ plots for Log commented line count in the A-series,
by code base
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Figure 4.16: Normal QQ plots for Log commented line count in the A-series,
by file type
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Something different is occurring with group A05, however. There is a bunch-
ing up around 17 commented lines because many files have almost identical
commented line counts. This is caused by a file prologue comment in several
of their header files, which in many cases is the only comment. An example is

shown in Figure 4.17.

1 /%

2 *

3 *

4 * Filename: random.h

5 *

6 * Description:

7 *

8 * Version: 1.0

9 * Created: 05/28/2011 10:38:52 PM
10 * Revision: mnone
11 * Compiler: gcc
12 *
13 * Author: Name(s) Redacted (20redacted), redacted@uwaterloo.ca
14 * Company :
15 *
16 *
17 */

Figure 4.17: Excerpt from a05/k4/src/random.h

This adversely affects the fit for A05/k4, but the quality of fit improves with
the larger number of data points present in A05/p3.
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Location and Scale Parameters

The location and scale parameters for commented line count are given in Fig-
ure 4.18.

kd p* | kdo* | p3 pu* | p3o*

Overall 6 lines | 3.6x 7 lines | 4.0x
Group AO1 | 6 lines | 4.0x 6 lines | 4.5x
Group A02 | 1line | 8.8x 2 lines | 7.2x
Group A03 | 20 lines | 2.3x | 21 lines | 2.7x
Group A04 | 8lines | 2.8x | 10 lines | 3.3x
Group AO5 | 7 lines | 2.5x 6 lines | 4.0x
Group A06 | 3 lines | 3.1x 4 lines | 3.2x

Figure 4.18: Parameters for the lognormal distributions fit to commented line
count in the A-series

Here the variation looks more extreme, especially for the ¢* estimates. To be

sure, the bootstrap confidence intervals in Figure 4.19 should be examined.

k4 o* p3o*

Overall 3.35x-3.85x | 3.58x—4.11x
Group AO1 | 3.24x-4.90x | 3.50x-5.00x
Group A02 | 3.14x-6.47x | 3.56x—6.30x
Group A03 | 1.98x-2.71x | 2.22x-3.11x
Group A04 | 2.59x-3.56x | 2.95x-3.89x
Group A05 | 2.87x-3.77x | 3.29x—4.72x
Group A06 | 2.57x-3.20x | 2.69x-3.26x

Figure 4.19: 95% bootstrap confidence intervals for the multiplicative standard
deviation estimates for commented line count in the A-series

Estimation of ¢* is very poor when many files have no comments, especially for
group A02. Even so, some pairs of intervals do not overlap, and so individual
variation has significant effect on the value of o*. However, these location and
scale parameters may not be ideal for describing a lognormal distribution with

this much truncation.
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Taming the Data

This analysis was done without excluding the undesirable comments mentioned
in Section 2.2.2. This is because the lognormal distribution fits slightly worse if
these comments are excluded. So even this straightforward attempt to improve
data quality fails to improve the results. This suggests that even though the
data is “wild”, my attempts to tame its wildness did not isolate the correct

factors.

4.1.4 Summary of Commenting by File

The distributions of line count and commented line count for the files in the
data are well approximated by a lognormal distribution. Each code base fol-
lows the same distribution, but the location and scale parameters vary. How-
ever, the scale parameter ¢* for total line count may have little individual
variation; the present data is inconclusive. Ignoring blank lines, and discard-
ing the presumably undesirable comments both fail to improve the quality of
fit, suggesting that I lack the understanding necessary for complex preprocess-

ing of the data.
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4.2 Comment Density

Figure 4.20 compares commented line count to total line count on Log scale.

The dashed line shown on these plots is the line y = . A point on this line

would correspond to a file in which every line is commented.

Log Commented Lines of Code

Figure 4.20: Log commented line
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Milestone p3 (527 files)
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Log Total Lines of Code

Commented Lines of Code

count versus Log total line count in the A-series

Every data point must be on or below this line, and the area below this line

is almost completely filled. Therefore, these two properties vary quite a lot

relative to each other. This is different from the comparison of nonblank line

count to total line count (Figure 4.11, page 78).

There is moderate positive correlation between these two variables: the corre-

lation coefficients for the Log-transformed data are R = 63.0% for milestone

k4 and R = 67.7% for milestone p3. However, this means little since every

point lies below the line y = x. For example, the data set

{(z,y):0<y<z<100, z,y € Z}

consisting of uniformly spaced points, unrelated except that y < z, has corre-
lation coefficient R = 50%.
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Figure 4.20 shows that the proportion of lines with comments varies greatly by
file. Therefore it is worth studying this proportion D, the comment density,

as a property of each file.

Scaling Properties of Density

A true measure of density would be unaffected by changes in the scale of the

data. Defining the comment density as

(# of commented lines)

D
(total # of lines)

implicitly assumes that the number of commented lines grows proportionally
to the total number of lines. That is, it assumes that if a given file were twice
as long, then it would have roughly twice as many comments. However, the

relationship may be different. A more general model is:
(# of commented lines) ~ ¢ - (total # of lines)®

where c is a scaling constant, and e is a positive exponent. This model allows
the proportion of comments in a file to depend on its size, which cannot be
ruled out without more investigation. For example, if a long file is more
complex than the sum of its parts, then long files may naturally have more

comments per line of code.

4.2.1 Comment Density within a File

This section investigates the uniformity of comment density within each file.
For example, the densities of each half of the file could be compared. This
could help validate my measure of density, because if the density is uniform,
then there is reason to believe that doubling the size of a file would also double

the number of commented lines. Figure 4.21 shows this comparison.
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Figure 4.21: Comparison of comment density within the files of the A-series,
plotted on square root scale

The points are transformed by a square root for easier viewing, and they are
jittered to prevent overlap. No relationship between the two is visible. There
is weak positive correlation: R = 47.4% for the transformed data, and other

power transformations give little improvement.

Several factors might mask a possible result. Large prologue comments cause
some files to have significantly more commented lines at the beginning. There
may be factor effects from the file type, group, or milestone. Also, this density
measure may be unreliable for very short files, where adding or removing a

single comment has a disproportionately large effect.

To deal with these problems, the following is done. Files shorter than 50
lines of code are excluded. Each file is split into halves, thirds, quarters, and
fifths, so even if the ends of the files behave differently, comparing two portions
from the middle avoids those problems. Also, each file type and code base is

examined individually.

Figure 4.22 compares fractional density measures for each file divided into
halves, thirds, quarters, and fifths. Figure 4.23 shows the comparison of the
third fifth versus the fourth fifth broken down by file type and by code base.

This pair was chosen for presentation since it has the highest correlation co-
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efficient, so it is the most likely to show a relationship. The other pairs were

also examined and are no better.

No file type, milestone, or group shows a relationship between any pair of these
fractional densities. Any relationship, linear or non-linear, between any two
fractions would show as a one-dimensional curve on the plot, but in all cases

the points spread out to fill the plotting area.

I conclude that comment density varies too much within a file for this approach
to validate my density measure. Perhaps the very concept of “the same source

code file, but twice as long” is ill-defined.
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Figure 4.22: Comparison of comment densities from fractions of the files in
the A-series, plotted on square root scale
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Figure 4.23: Comment density of third fifth versus comment density of fourth
fifth in the A-series, plotted on square root scale, by file type and by code base
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4.2.2 Comment Density over Time

Another way to think about “the same file but larger” is to examine the files as
they change over time. Unfortunately, the data was not processed to track code
changes in a way which is thorough enough to make any definite conclusions.
For a preliminary test, I assume that a file in milestone p3 corresponds to the
later version of a file from milestone k4 if they have the exact same file name
(including the full path).

There are 341 such matching pairs of files, 158 with changes between the two

milestones. Figure 4.24 shows a comparison of the changed files.

Files Changed Between k4 and p3 (158 files)

100% —

64% —

36% —

16% — o

Comment Density (p3)

4% —

0% —

T T T T T T
0% 4% 16% 36% 64% 100%

Comment Density (k4)

Figure 4.24: Comparison of comment density in the A-series for source files
changed between milestones, plotted on square root scale

Linear regression on the transformed data gives an R? value of 85.1% (the
untransformed data gives a slightly lower R? value). This is much better than
the previous attempt! Further investigation is required, but this data suggests

that the comment density of a file changes little over its development lifetime.
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4.2.3 Factor Analysis for Comment Density

This section looks at how group, milestone, and file type affect comment den-
sity. Transforming the data by a square root gives the distribution shown in
Figure 4.25.

Milestones k4 and p3 Normal QQ Plot for Both Milestones

— 100% —

150
64% —

100 — 36% —

Frequency

16% —

4% -
R =99.5%
0% — o ° (zeroes excluded)
T T

I T T T T 1 T T T T T
0% 4% 16% 36% 64%  100% -3 -2 -1 0 1 2 3

Comment Density

50

Comment Density Theoretical Quantiles

Figure 4.25: Histogram and normal QQ plot for square root transformed com-
ment density in the A-series

The square root of density is close to a normal distribution, but is truncated to
the left at zero. Therefore it is reasonable to perform an ANOVA, the results
of which are shown in Figure 4.26. Files with no comments are excluded from
the ANOVA.

df | sum of squares | mean square F D
milestone | 1 0.009 0.009 0.485 0.486
group 5 2.983 0.597 33.703 | < 0.001 *
file type 3 4.193 1.398 78.974 | < 0.001 *
error 730 12.921 0.018
Total 739 20.105

Figure 4.26: ANOVA results for square root comment density in the A-series

The difference between milestones is not significant, which is consistent with

comment density being stable over time. Both file type and group significantly
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affect the comment density. Figure 4.27 gives the post-hoc comparisons for

these factors.

assembly header script
header 0.395
script 0.008 * 0.034 *
implementation | < 0.001 * | < 0.001 * | < 0.001 *
A03 A04 A05 A02 A06
A04 | < 0.001 *

A05 | < 0.001 * 0.207
A02 | < 0.001 * 0.004 * 0.384
A06 | < 0.001 * | < 0.001 * 0.002 * 0.992
A01 | < 0.001 * | < 0.001 * 0.004 * 0.948 0.994

Figure 4.27: Tukey post-hoc comparisons for square root comment density in
the A-series

Implementation files are the least densely commented (p < 0.001), followed by
script files (p < 0.04). Group A03 comments the most densely (p < 0.001).

The other groups are ordered as:
A04 > A05 > A02 > A06, AOL.

where the difference is significant for groups more than two spaces apart in
this chain (p < 0.005).

Figure 4.28 gives the average density for each group, milestone, and file type
as seen by the ANOVA. Zero values are excluded from the calculation of the
mean, and the presented value is actually the untransformed mean of the trans-
formed data. This is analogous to using the geometric mean for lognormally

distributed data to present the values in the original units.

Figure 4.29 shows normal QQ plots for square root density by file type and
by code base. Each file type and code base appears to be roughly normally
distributed, but looking more closely, there are some pronounced deviations.
Group A04 and code base A01/k4 have negative curvature throughout the
centre of the distribution, code base A03/p3 has a noticeable sigmoid shape,
and group A02 has a consistent bend in the centre. All of these suggest
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Milestone ‘ Cell Mean

k4
p3

15.6%
15.0%

Group

Cell Mean

A01
A02
A03
A04
A05
A06

10.5%
11.9%
25.9%
18.3%
15.3%
11.1%

File type Cell Mean
assembly 24.5%
header 21.1%
implementation 9.5%
script 15.9%

Figure 4.28: Untransformed cell means for square root comment density in the
A-series
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header (422 files)

assembly (38 files)

script (42 files)
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Figure 4.29: Normal QQ plots for square root comment density in the A-series
by file type and by code base
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systematic deviations from normality which are not common to all groups.
Still, the square root transformation improves normality, which is useful for

statistical techniques intended for normally distributed data.

4.2.4 Comment Density versus Task Difficulty

While extracting comments from the data, I saw many files with very few com-
ments. Often, these files solve straightforward problems, such as implementing
utility or helper functions. It has been suggested in the literature that difficult

code is commented more densely [19].

The implementation and assembly files in the data set can be classified based
on the nature of the task they are solving. I manually classified each imple-
mentation and assembly file from milestone p3 into one of five task categories,

described below.

The students are not given a full standard library compatible with their com-
piler, so they have to implement common library functions themselves. I
expect these library files to contain the fewest comments because the code in

these files solves basic problems familiar to the students.

The most difficult part of the operating system assignments is writing a correct
context switch. It must be written in assembly language, and is notoriously
difficult to debug. Thus, the context switch files containing its implementation

are likely to have the most comments.

Many context switch files are C implementation files, since many students
embed the assembly language code in C source files. Also, some library code
is written in assembly language files. So, this is not just reiterating the file

type distinction.

Some files contain code which implements their operating system. I expect

these operating system files be moderately commented.

Other files implement the train project as a set of user programs on top of their

operating system. The train project is more difficult than the operating system
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project, so I expect the train project files to be commented more densely than

the operating system files.

Finally, some files contain code written for their operating system, but which
is not part of the train project. These are mostly test programs, or other
useful programs, such as those providing the user interface. These are the
user program files, expected to have relatively few comments because they are

more straightforward to implement and less essential.

Figure 4.30 gives the results of a Wilcox rank sum test applied to comment
density by task category. This test only uses the relative ordering of the data

values, so there is no need to transform the data.

context switch | operating system | train project | user program

operating system < 0.001 *

train project < 0.001 * 0.321
user program < 0.001 * 0.050 * 0.321
library < 0.001 * 0.010 * 0.103 0.627

Figure 4.30: Pairwise Wilcox rank sum test results for the effect of task cate-
gory on comment density in the A-series

Context switch files are by far the most densely commented (p < 0.001). The
user program and library files are less densely commented than the operating
system files (p < 0.05). Interestingly, the operating system and train project
files are not significantly different, and this data suggests that the operating

system files may be more densely commented.

4.2.5 Summary of Comment Density

The proportion of commented lines varies tremendously among their source
files. It even varies within each file, but it may be worthy of the name “den-
sity”, since it appears to be stable as the files change during the development
of the software. The distribution of comment density is affected by group dif-
ferences, but transforming by a square root gives some approximation of nor-
mality. The data provides further evidence that difficult code is commented

more densely.
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4.3 Comment Length

Now the data is investigated at the level of individual comments. Dividing the
raw data into individual comments required manually merging some comment
fragments split over several lines. As in previous sections of this chapter, I
retain the undesirable comments identified in Section 2.2.2, because excluding

them fails to improve the results of this section.

4.3.1 Measuring Comment Length

There are many ways to measure the amount of text in a comment. An
obvious measure is word count, but I found that character count has a better
distribution. Again, simpler measurements fare better. Word count is also a
coarser measure than character count since it ignores the lengths of individual

words, which discards a lot of information.

Defining the Text of a Comment

Which characters in the comment text should be counted? Consider the com-

ment in Figure 4.31.

49 default:
50 colour = 31; //RED
51 break;

Figure 4.31: Excerpt from a04/p3/src/sys_calls/display.c

The literal text of this comment is six characters long: “/”, “/” “R”, “E”,
“D”, and a newline character which terminates the comment. Perhaps the
comment indicator “//”, as well as the terminating newline, should be ex-

cluded. Even more extreme is the comment shown in Figure 4.32.
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116 /*x

117 * Returns the CPSR.

118 *x/

119  NOMANGLE_DECL int asm_get_cpsr(void);

Figure 4.32: Excerpt from a01/k4/src/system.h

This comment has 28 characters in total, including two newlines, four spaces,
five asterisks, and two forward slashes. The space at the beginning of line 117

is indeed part of the comment’s text.

Therefore, I define the corrected text of a comment, as distinguished from
its raw text, as follows. First, any comment indicators and terminators are
removed. For comments with the indicator “/*”, asterisks are removed from
both ends of each line. For comments with other indicators, repetitions of
the indicator symbol are removed from the beginning of each line. Then,
redundant whitespace is deleted: all whitespace is removed from both ends,
and each run of consecutive whitespace characters is replaced by a single space.
Finally, runs of five or more of any punctuation symbol are also removed since

2

they are likely parts of banners (in the data, only “*” “#” “=" and “-

b

occurred in this way).

The corrected text of the comment shown in Figure 4.31 is the three-character
string “RED”, and the comment in Figure 4.32 has corrected text “Returns
the CPSR.”, which has only two spaces separating the three words. Some
comments are dividers whose raw text is just a banner, such as the comment
in Figure 4.33. This comment has a corrected text length of zero since it has

no English text.

37 @ Save out IRQ handler data
38 stmdb  a2!, {ip, sp, 1lr}

39 c]
40 Q@ Enter supervisor mode

41 mrs ip, cpsr

Figure 4.33: Excerpt from a06/p3/src/trap.s
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Redacting the data changes some of the text in the files. In previous sections
of this chapter, the analysis is unaffected because the files are examined line
by line, and redaction does not add or remove lines. In this section, comments
with any redacted text are excluded, since the true lengths of these comments
are unavailable. This affects relatively few comments, as shown in Figure 4.34,
and group A02 was completely unaffected, since none of their comment text

was redacted.

Group | Redacted in k4 | Redacted in p3
Overall 1.7% 2.5%

A01 0.2% 0.1%

A02 0.0% 0.0%

A03 4.0% 71%

A04 0.1% 0.2%

A05 7.9% 3.6%

A06 0.2% 0.1%

Figure 4.34: Proportions of comments with redacted text in the A-series
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4.3.2 Distribution of Comment Length

Figure 4.35 gives normal QQ plots of the Log-transformed corrected comment

text length.

Milestone k4 (3433 comments) Milestone p3 (6834 comments)

12 - 4095 12 - 4095
£ 10 o°—1023£ £ 10 -
= & = f=4 =
g 4 g 3 §
£ 8 - 255 o £ 8 J
£ 3 £ 3
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o 6 -63 & o 6 £
kel (8] o [G]
g 3 g 3
2 4 -15 © g 44 S
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S 24 s -3 S 24

0 — o ocomm R=98.6% 0 0 44 ccommm R=98.3% 0
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Normal Score Normal Score

Figure 4.35: Normal QQ plots for Log corrected comment length in the A-series

Centrally the data is well approximated by a lognormal distribution. Devi-
ations from normality for short comments are of little concern because they
are inevitable in discrete data. However, there is significant deviation at high
values. In the code base breakdown shown in Figure 4.36, every code base
except A05/k4 deviates in the same direction. In the earlier results for file
length, individual code bases deviated to both sides of the line (Figure 4.7,
page 74).
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Figure 4.36: Normal QQ plots for Log corrected comment length in the A-

series, by code base
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Figure 4.37: Normal QQ plots for Log corrected comment length in the A-

series, by file type
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4.3.3 Long Tail Behaviour

Thus, it may be significant that the high values for comment length increase
more rapidly than would be expected of a normal distribution. In other words,
the distribution may have a long tail, so named because on a histogram of such

data, the right tail has a stretched out appearance.

A random variable X has a long tail if its complementary cumulative distribu-
tion function (CCDF) approximates a power law for sufficiently large values,

that is, if there are constants ¢ and « such that
Pr(X >uz] ~ cx™®

for sufficiently large x. The parameter ¢ determines the scale of the data. The
parameter o > 0 is the tail index of the distribution. This tail index measures
the degree of falloff in the right tail, with high values corresponding to a
faster falloff. The lognormal distribution falls off faster than any long-tailed

distribution, no matter how large its tail index.

The parameter « has special significance. If a < k, then the kth moment
of X is infinite. In particular, if a < 2, then X has infinite variance, and
the Central Limit Theorem does not hold for X. For such random variables,
the few largest values dominate in any sample. Some authors consider this
property as the main characteristic of long tail behaviour, and require o < 2

for a distribution to have a long tail.

The logarithm of the above equation is
log, Pr[X > z] ~ —alogy,z + log,c.

So, on a log-log plot the CCDF of a long-tailed distribution converges to a
straight line with slope —a. When a lognormal distribution is graphed in
this way, its CCDF curves downward with continually decreasing slope. The

empirical CCDF plots for the data are shown in Figure 4.38.
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Prob[Corrected Comment Length > x]

Milestone k4 (3433 comments) Milestone p3 (6834 comments)

1

1/4 4

116 - 1/16

1/64
1/64

1/256
1/256

1/1024 —
1/1024 —

Prob[Corrected Comment Length > x]

1/4096 —

1/4096

0 3 15 63 255 1023 0 3 15 63 255 1023
Corrected Comment Length Corrected Comment Length

In each plot, the blue dashed curve is the CCDF for the lognormal distri-
bution fit to the data, and the red dot-and-dash line is the CCDF for the
power law fit to the upper sixteenth of the data.

Figure 4.38: Empirical CCDFs for corrected comment length in the A-series

The estimated parameters p* and o* can be used to fit a lognormal distribution
to the data. The CCDF of this fitted lognormal distribution is shown as blue
dashed lines in Figure 4.38.

I use the method of Crovella and Taqqu to estimate the tail index «; this
method is more reliable than linear regression [8]. The estimated tail index is
a = 1.57 for the data set as a whole. It is best to use the entire data set since

this estimate requires a large number of data points.

The estimate for ¢ is chosen so that the fitted distribution agrees with the
empirical CCDF at the upper sixteenth quantile of the data. The CCDF of
the fitted power law is shown as red dot-and-dash lines in Figure 4.38. It
appears to fit the right tail of the data better than a lognormal distribution.

This graphical test can be made more objective, using a method of Downey
[11]. Downey defines a measure of tail curvature, which approximates the sec-
ond derivative of the log-log plotted empirical CCDFs shown in Figure 4.38.
For the null hypothesis of a lognormal or power law distribution, by drawing

many samples from a fit of this distribution to the data, an empirical distribu-

102



tion for the tail curvature of the sample under the null hypothesis is obtained.
Then, the tail curvature of the actual data is compared with this empirical
distribution of tail curvatures to obtain a simulation-based p value. This test
is completely unaffected by the value of ¢, so the arbitrary choice of ¢ poses

no problem.

I follow Downey’s convention, and consider the tail region to be the upper
sixteenth of the data for the purposes of this test. The test rejects that the
tail of the comment length distribution is lognormal with p < 0.001. This
validates the presence of long tail behaviour in the data. It fails to reject that

the tail follows a power law, with p = 0.629.

There are not enough data points to compute estimates of the tail index or
to apply Downey’s test to any individual code base. The same is true for
applying the test to the distributions of line count and commented line count
from Section 4.1. In all cases there is failure to reject that the distribution
is lognormal, as well as failure to reject that it follows a power law. A large
number of data points are required because most are ignored: Downey’s test
uses less than 7% of the data!

In light of the upper tail being decidedly non-normal, it makes sense to exclude
the upper tail from linear regression on the normal QQ plots. Figure 4.39
shows the R values fit to just the central fourteen sixteenths of the data,
which is delimited by dashed lines. I also exclude the lower tail since I am
not concerned by deviations there. Figures 4.40 and Figures 4.41 show the
breakdown by code base and by file type, and there are greatly improved R

values.
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Figure 4.39: Normal QQ plots for Log corrected comment length in the A-
series, with both tails excluded from the fit
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Figure 4.40: Normal QQ plots for Log corrected comment length in the A-

series, with both tails excluded from the fit, by code base
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Figure 4.41: Normal QQ plots for Log corrected comment length in the A-
series, with both tails excluded from the fit, by file type
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4.3.4 Factor Analysis for Comment Length

Since the bulk of the data is lognormally distributed, an ANOVA can be
performed on the Log-transformed data. Both the upper and lower sixteenths
of the data are excluded to improve normality. Figure 4.42 provides the results
of the ANOVA.

df | sum of squares | mean square F P
milestone | 1 6.875 6.875 12.963 | < 0.001 *
group 5 95.838 19.168 36.140 | < 0.001 *
file type 3 94.442 31.481 59.355 | < 0.001 *
error 8652 4588.827 0.530
Total 8661 4785.982

Figure 4.42: ANOVA summary for Log corrected comment length in the A-series

Every tested factor is significant, so Figure 4.43 gives the post-hoc compar-

isons.
implementation | assembly script
assembly 0.031 *
script 0.203 0.997
header < 0.001 * < 0.001 * 0.025 *
A05 A03 A02 A01 A04
A03 0.095
A02 0.016 * 0.745
A01 0.005 * 0.446 0.999
A04 | < 0.001 * 0.091 0.995 1.000
A06 | < 0.001 * | <0.001 * | <0.001 * | <0.001 *| < 0.001 *

Figure 4.43: Tukey post-hoc comparisons for Log corrected comment length
in the A-series

Header files have the shortest comments (p < 0.03). Implementation files have
longer comments than assembly and header flies (p < 0.04). Group A05 writes
longer comments than every other group except A03 (p < 0.02). Group A06
writes the shortest comments (p < 0.001).
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Given that the group differences are significant, it is worth looking at the

estimated location and scale parameters shown in Figure 4.44.

k4 p* k4 o* p3 u* p3 o*

Overall 26 characters | 2.1x | 27 characters | 2.3x
Group AO1 | 33 characters | 2.5x | 32 characters | 2.7x
Group A02 | 30 characters | 1.9x | 28 characters | 2.2x
Group AO3 | 27 characters | 1.8x | 29 characters | 1.8x
Group A04 | 25 characters | 1.9x | 24 characters | 2.5x
Group A05 | 35 characters | 2.2x | 36 characters | 2.7x
Group A06 | 19 characters | 2.4x | 21 characters | 2.4x

Figure 4.44: Parameters for the lognormal distributions fit to corrected com-
ment length in the A-series

Here the variation is less extreme than seen for file length and commented
line count. However, the differences in p* between some pairs of groups are
significant by the ANOVA (Figure 4.43). Figure 4.45 shows the bootstrap

confidence intervals for the estimates of o*.

k4 o* p3o*

Overall 2.05x-2.17x | 2.31x—2.42x
Group AO01 | 2.31x-2.74x | 2.58x-2.91x
Group A02 | 1.84x-2.05x | 2.04x-2.34x
Group A03 | 1.71x-1.82x | 1.72x-1.79x
Group A04 | 1.83x-1.97x | 2.49x2.68x
Group A05 | 2.09x—2.41x | 2.48x—2.93x
Group A06 | 2.25x-2.60x | 2.31x-2.59x

Figure 4.45: 95% bootstrap confidence intervals for the multiplicative standard
deviation estimates for corrected comment length in the A-series

There are many more comments than files: this time there are over ten times
as many data points. The estimates of ¢* are much more precise, and many
pairs of intervals within each milestone are disjoint. Therefore the value of o*

for the comment length distribution cannot be universal across groups.
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4.3.5 Summary of Comment Length

The character count of individual comments follows a lognormal distribution,
except for the right tail, which shows long tail behaviour with tail index ap-
proximately a = 1.57. The location and scale parameters vary by group and
by milestone. There are not enough data points to validate the long tail be-

haviour of individual groups, nor to estimate the tail index of each group.
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4.4 Evaluation on the B-series

As described in Chapter 2, the data set was collected from three different
offerings of the course, and these three portions of the data are labelled the
A-; B-, and C-series. All investigation so far was exploratory analysis of the
A-series, the pilot data set. Now the B- and C-series which make up the test
data set are investigated. I processed the B-series first, so that the hypotheses

could be adjusted for the C-series if necessary.

4.4.1 Evaluation Philosophy

The most robust observations from analyzing the results of the A-series data
in Sections 4.1-4.3 were collected into a set of explicit hypotheses. The hy-
potheses were then tested against the B-series data set, which was hidden until
the hypotheses were finalized. Indeed, I wrote the complete draft of this work
up to the end of Section 4.4.2 before contaminating myself by analyzing any
of the test data set.

I tested only the strongest observations to ensure that this evaluation is worth-
while. Also, my understanding of many of the observations is not precise
enough to permit them to be tested objectively. However, the test data set
does not have to be completely used up now; if the right tool is developed later,

then additional hypotheses can be tested, either by me or by other researchers.

It is important to make the hypotheses objective to remove the bias in hu-
man judgement. Fortunately, excluding the undesirable comments, which were
identified subjectively, failed to improve the results in Sections 4.1-4.3, so this
step is omitted for the test data set. Only the automatic merging of line com-
ments was applied to the test data set. The quantitative features of the data
should be little affected, because relatively few comments — only 3% — received

manual merging or splitting in the pilot data set.

Owing to my methodology, arbitrary choices in the hypotheses need not be
justified because a bad hypothesis simply fails on the test data set. In some

sense, the ends justify the means: if the hypotheses are validated then they
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are correct. Adding unnecessary detail increases the risk, and is punished by

testing on hidden data.

4.4.2 Forming Explicit Hypotheses

I consider data to be lognormally distributed if its Log-transform is normally

distributed, where Log is the shifted logarithm transformation
Log(xz) = logy(x + 1).

Quality of fit to the lognormal distribution is measured graphically using a
normal QQ plot, and quantitatively using the R value obtained from linear

regression on the normal QQ plot.

Total Line Count by File

These hypotheses are for total number of lines of code by file, and are based

on the results in Section 4.1.2.

e (Hla) For each milestone, total line count by file fits a lognormal distri-

bution.

e (H1b) For each code base, total line count by file fits a lognormal distri-

bution.

Commented Line Count by File

These hypotheses are for commented lines of code by file, and are based on
the results in Section 4.1.3. A commented line is a line of code containing part
of a comment, as defined by the programming language syntax. For linear
regression on the QQ plot, zero values are excluded from the fit but are still

assigned the appropriate normal scores for their rank.

e (H2a) For each milestone, commented line count by file fits a lognormal

distribution.
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e (H2b) For each code base, commented line count by file fits a lognormal

distribution.

Corrected Comment Text Length

The corrected text length of a comment is the number of characters in the
comment text after removing superfluous punctuation and whitespace (see
Section 4.3.1 for the precise definition). These hypotheses are for the distribu-
tion of corrected comment text length for individual comments, and are based
on the results in Section 4.3.2. For linear regression on the QQ plot, values
from the upper and lower sixteenths of the data are excluded, but are still

assigned the appropriate normal scores for their rank.

e (H3a) For each milestone, the central part of the distribution of corrected

comment length fits a lognormal distribution.

e (H3b) For each code base, the central part of the distribution of corrected

comment length fits a lognormal distribution.

Long Tail Behaviour of Comment Length

These hypotheses test the long tail behaviour of corrected comment text
length, and come from Section 4.3.3. Downey’s test distinguishes between
lognormal and power law distributions in the upper tail of the data [11]. The
method of Crovella and Taqqu estimates the tail index [8]. The tail index is
hypothesized to be between 1 and 2 because the accuracy of the measurement
is unknown, and this range captures the most important qualitative properties
(finite mean and infinite variance). Each of these hypotheses applies to the
B-series as a whole, because a large number of data points is needed when

studying tail behaviour.

e (H4a) Downey’s test rejects that the upper tail of the corrected comment

length distribution is lognormal.
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e (H4b) Downey’s test fails to reject that the upper tail of the corrected
comment length distribution is a power law. This is included as a sanity

check, since failure to reject is not significant.

e (H4c) The estimated tail index « for the corrected comment length dis-

tribution is between 1 and 2.

Estimates of ¢* for Total Line Count by File

Based on the results of Section 4.3.4, the estimated multiplicative standard
deviation ¢* for comment length varies by group. In Section 4.1.2 the dif-
ferences in o* for file length are just short of significance. So, the test data
set should provide enough additional data for these differences to be signifi-
cant. Therefore, I also attempt to falsify the following hypotheses, which are

consistent with the A-series data.

e (H5a) The 95% bootstrap confidence interval for o* of the lognormal
distribution fit to line count for each code base of milestone k4 contains
2.9.

e (H5b) The 95% bootstrap confidence interval for o* of the lognormal
distribution fit to line count for each code base of milestone p3 contains
3.3.

Validation on the Pilot Data Set

As a sanity check, these hypotheses were first tested on the pilot data set,
excluding H5a and H5b which cannot be falsified by the pilot data. The only
failure is that the commented line count distribution in code base A05/k4 has
a relatively poor fit with R = 92.0% (Figure 4.15, page 81). The likely reason
for this was addressed in Section 4.1.3. The stated hypothesis H2b makes no
attempt to compensate for this, because I do not want to introduce additional

complications for the sake of a single exception in the pilot data set.
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4.4.3 B-series Results

Total Line Count by File

Figures 4.46-4.48 show the results for lognormality of total line count in the

B-series. The R values shown in Figure 4.46 are comparable with those for

the A-series, excluding group BO7. Looking at Figure 4.48, however, group

B0O7 has many fewer files than the other groups. Indeed, the file kernel.c

contains essentially their entire program. As a post-hoc test, a Wilcox rank

sum test can be applied to compare the R values in the A-series with those

obtained here for the B-series. However, this test falls short of significance

(p = 0.195). Graphically, deviations from normality are no worse than in the

A-series (compare to Figure 4.7, page 74), with the possible exception of code

base B04/p3.

k4 R value | p3 R value
Overall 99.8% 99.8%
Group B01 99.0% 99.1%
Group B02 98.2% 98.1%
Group B03 98.3% 98.3%
Group B04 97.6% 96.0%
Group B05 96.8% 98.9%
Group B06 97.8% 99.0%
Group B07 88.7% 93.0%
Group B08 99.2% 99.0%
Group B09 99.2% 99.6%
Group B10 99.3% 98.4%
Lowest Group 88.7% 93.0%
Second Lowest Group 96.8% 96.0%
Third Lowest Group 97.6% 98.1%
A-series Lowest Group 98.0% 98.5%
A-series Second Lowest Group 98.7% 98.5%
A-series Third Lowest Group 98.7% 98.6%

Figure 4.46: Goodness of fit of the lognormal distribution for total line count

by file in the B-series

113



Milestone k4 (447 files)

12

Log Line Count

- 4095

~ 1023

- 255

- 63

Line Count
Log Line Count

- 15

R=99.8%| 0

T
2

I
3

12

10

Milestone p3 (707 files)

— 4095

~ 1023

- 255

- 63

Line Count

- 15

R=99.8%| 0

T T T T T T T
-1 0 1 2 3

Figure 4.47: Normal QQ plots for Log line count in the B-series
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Figure 4.48:

Normal QQ plots for Log line count in the B-series, by code base
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Commented Line Count by File

Figures 4.49-4.51 show the results for the test of lognormality for commented
line count in the B-series. In the A-series, excluding the outlier A05/k4, the
lowest R value is R = 98.2%. Here the R values are lower, even if the few
lowest values are excluded as potential outliers. A Wilcox rank sum test finds
that the differences in R values between the A- and B-series are significant at
the 0.05 level (p = 0.029), but the differences themselves are small. In the
B-series, the fit for milestone p3 is much better than for milestone k4; the R
values for milestone p3 are closer to those seen for the A-series. Deviations from
normality are no worse than for the A-series (compare Figure 4.15, page 81),

even for groups B04 and B07 which have few files with comments.

k4 R value | p3 R value
Overall 99.2% 99.5%
Group B01 94.9% 99.0%
Group B02 98.6% 98.5%
Group B03 97.9% 98.2%
Group B04 93.9% 97.3%
Group B05 97.6% 99.2%
Group B06 98.5% 98.8%
Group B07 92.1% 98.2%
Group B08 94.8% 96.7%
Group B09 98.4% 99.2%
Group B10 98.9% 98.3%
Lowest Group 92.1% 96.7%
Second Lowest Group 93.9% 97.3%
Third Lowest Group 94.8% 98.2%
A-series Lowest Group 92.0% 98.3%
A-series Second Lowest Group 98.2% 98.7%
A-series Third Lowest Group 98.6% 99.0%

Figure 4.49: Goodness of fit of the lognormal distribution for commented line
count by file in the B-series
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4.50: Normal QQ plots for Log commented line count in the B-series
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Figure 4.51: Normal QQ plots for Log commented line count in the B-series,
by code base
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Corrected Comment Text Length

Figures 4.52-4.54 show the results for lognormality of the central part of the
distribution of corrected comment length in the B-series. The fit is good in
the centre of the distribution, and the R values are relatively high: the lowest
is R = 97.8%. However, again the R values are lower than in the A-series
where the minimum R value was R = 98.9% (Figure 4.40, page 104). This
difference is again significant at the 0.05 level by a Wilcox rank sum test, with
p = 0.036. The R values seen here may be more realistic, due to overfitting in

the analysis of the A-series.

k4 R value | p3 R value
Overall 99.8% 99.7%
Group B01 99.2% 99.1%
Group B02 99.7% 98.8%
Group B03 97.9% 99.4%
Group B04 98.5% 99.4%
Group B05 99.8% 99.9%
Group B06 97.8% 98.1%
Group B07 99.4% 99.7%
Group B08 98.8% 99.8%
Group B09 99.3% 99.5%
Group B10 98.9% 99.4%
Lowest Group 97.8% 98.1%
Second Lowest Group 97.9% 98.8%
Third Lowest Group 98.5% 99.1%
A-series Lowest Group 99.1% 98.9%
A-series Second Lowest Group 99.4% 99.3%
A-series Third Lowest Group 99.5% 99.5%

Figure 4.52: Goodness of fit of the lognormal distribution for corrected com-
ment text length in the B-series
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Figure 4.54: Normal QQ plots for Log corrected comment length in the B-
series, by code base
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Prob[Corrected Comment Length > x]

Long Tail Behaviour of Comment Length

The hypotheses for long tail behaviour of corrected comment length are con-
sistent with the B-series data, as shown in Figure 4.56. The tail index estimate
for the B-series is also quite close to the A-series tail index estimate of 1.57.
Unfortunately, it is difficult to obtain a confidence interval for this measure-

ment to determine whether the difference in estimated tail index is significant.

Milestone k4 (2820 comments) Milestone p3 (5229 comments)

1/4 14 1

116 - 1/16

1/64
1/64

1/256
1/256

1/1024 —

Prob[Corrected Comment Length > x]

1/1024

1/4096

\ \ .
T T T T T T T T T T T T T T

0 3 15 63 255 1023 4095 0 3 15 63 255 1023 4095
Corrected Comment Length Corrected Comment Length

In each plot, the blue dashed curve is the CCDF for the lognormal distri-
bution fit to the data, and the red dot-and-dash line is the CCDF for the
power law fit to the upper sixteenth of the data.

Figure 4.55: Empirical CCDFs for corrected comment length in the B-series

p value for lognormal distribution | 0.001 *

p value for power law 0.199

estimate of tail index « 1.54

Figure 4.56: Results for Downey’s test applied to corrected comment length
in the B-series
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Estimates of ¢* for Total Line Count by File

I realized after testing on the B-series that hypotheses Hba and H5b were
poorly designed. For milestone p3, the value 3.3 was arbitrarily chosen, but
any value of o* between 3.233 and 3.507 is consistent with the A-series data.
Also, nothing was done to adjust the 95% confidence levels to compensate for
multiple testing. The results for the B-series data technically falsify hypotheses
Hb5a and Hb5b, but this means little in light of these problems.

Since line count is lognormally distributed with no truncation, traditional tests
for homogeneity of variance can be used. However, both Bartlett’s test and
the Fligner-Killeen test fail to reject the null hypothesis that the variance
of the Log-transformed data is the same for each code base. They even fail
to reject if the A- and B-series data are combined. Therefore I abandoned
these hypotheses, since there is insufficient statistical power to obtain a precise

enough estimate of o*.

4.4.4 Summary of B-series Results

Overall, the hypotheses in Section 4.4.2 are consistent with the B-series data.

The hypotheses Hla, H2a, and H3a concerning lognormal distributions fit to
various quantities by milestone were validated, and give comparable R val-
ues to the A-series. The hypotheses H1b, H2b, and H3b which examine the
distribution of these same quantities for each individual code base were also
validated, but here the quality of fit is slightly lower than for the A-series, and
this difference is statistically significant for H2b and H3b.

Hypotheses H4a, H4b, and H4c concerning long tail behaviour of the comment
length distribution were validated perfectly.

Hypotheses H5a and H5b were validated, but were too poorly stated to be
interesting. More careful post-hoc testing failed to give any significant result,
so I abandoned further attempts to validate these hypotheses using the test
data set.
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4.5 Evaluation on the C-series

Minor changes were made to the hypotheses before I looked at the C-series.
Hypotheses H5a and Hbb are dropped. Hypotheses H1b, H2b, and H3b are
extended by comparing the R values for the C-series to those of the A- and
B-series using a Wilcox rank sum test with significance at the 0.05 level. Com-
paring to the B-series may be more realistic, since both the B- and C-series

data are complete, unlike the A-series.

The hypotheses are summarized below; see Section 4.4.2 for the full descrip-
tions. For hypotheses H4a, H4b, and H4c, the data for milestones k4 and p3

is combined.

e (H1la) For each milestone, total line count by file fits a lognormal distri-

bution.

e (H1b) For each code base, total line count by file fits a lognormal distri-

bution.

e (H2a) For each milestone, commented line count by file fits a lognormal

distribution.

e (H2b) For each code base, commented line count by file fits a lognormal

distribution.

e (H3a) For each milestone, the central part of the distribution of corrected

comment length fits a lognormal distribution.

e (H3b) For each code base, the central part of the distribution of corrected

comment length fits a lognormal distribution.

e (H4a) Downey’s test rejects that the upper tail of the corrected comment

length distribution is lognormal.

e (H4b) Sanity check: Downey’s test fails to reject that the upper tail of

the corrected comment length distribution is a power law.

e (H4c) The estimated tail index « for the corrected comment length dis-

tribution is between 1 and 2.
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4.5.1 C-series Results

Total Line Count by File

Figures 4.57-4.59 show the results for lognormality of total line count in the
C-series. The fit to a lognormal distribution looks good for each code base in
Figure 4.59, except for code base C02/p3 (compare to Figure 4.7 on page 74
and Figure 4.48 on page 114). Code base C09/k4 has a markedly lower R
value than the others, but it has relatively few data points. The C-series R
values are not significantly lower than those for the A-series (p = 0.501), nor

are they significantly lower than those for the B-series (p = 0.495).

k4 R value | p3 R value
Overall 99.6% 99.6%
Group CO01 99.2% 98.9%
Group C02 97.5% 97.3%
Group CO03 98.7% 98.7%
Group C04 98.3% 98.8%
Group C05 98.6% 99.2%
Group C06 99.3% 99.1%
Group CO7 98.1% 98.8%
Group C08 98.4% 99.7%
Group C09 95.9% 99.1%
Group C10 98.3% 98.8%
Lowest Group 95.9% 97.3%
Second Lowest Group 97.5% 98.7%
Third Lowest Group 98.1% 98.8%
A-series Lowest Group 98.0% 98.5%
A-series Second Lowest Group 98.7% 98.5%
A-series Third Lowest Group 98.7% 98.6%
B-series Lowest Group 88.7% 93.0%
B-series Second Lowest Group 96.8% 96.0%
B-series Third Lowest Group 97.6% 98.1%

Figure 4.57: Goodness of fit of the lognormal distribution for total line count
by file in the C-series
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Figure 4.58: Normal QQ plots for Log line count in the C-series
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Figure 4.59: Normal QQ plots for Log line count in the C-series, by code base
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Commented Line Count by File

Figures 4.61-4.63 show the results for lognormality of commented line count
in the C-series. Graphically, the deviations from normality for most groups
are comparable to the A- and B-series (Figure 4.15 on page 81 and Figure 4.51
on page 116). Groups C03, C06, and C07 deviate by having too many files
with exactly the same commented line count. For group C06 this is caused
by six similar Makefiles in each code base with exactly ten commented lines
each. For groups C03 and C07, nearly all files with one commented line are
header files whose only comment is an end block comment like the one shown
in Figure 4.60.

#ifndef CLOCK_NOTIFIER_H
#define CLOCK_NOTIFIER_H

void ClockNotifierTask(void);

a s W N -

6 #endif // CLOCK_NOTIFIER_H
Figure 4.60: The entirety of c03/p3/src/clock/clocknotifier.h

The C-series R values are significantly lower than those for the A-series (p =
0.005). However, they are not significantly lower than those for the B-series
(p = 0.355). The B-series is a fairer comparison since it has the same number
of groups, and since the A-series has bias because four groups did not respond

with consent for their code to be studied.
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k4 R value | p3 R value
Overall 99.4% 99.4%
Group C01 98.0% 98.3%
Group C02 99.1% 99.3%
Group C03 85.3% 86.7%
Group C04 97.7% 97.0%
Group C05 95.5% 98.4%
Group C06 96.0% 96.8%
Group CO07 97.0% 98.0%
Group CO08 98.9% 98.9%
Group C09 96.0% 98.3%
Group C10 97.1% 97.1%
Lowest Group 85.3% 86.7%
Second Lowest Group 95.5% 96.8%
Third Lowest Group 96.0% 97.0%
A-series Lowest Group 92.0% 98.3%
A-series Second Lowest Group 98.2% 98.7%
A-series Third Lowest Group 98.6% 99.0%
B-series Lowest Group 92.1% 96.7%
B-series Second Lowest Group 93.9% 97.3%
B-series Third Lowest Group 94.8% 98.2%

Figure 4.61: Goodness of fit of the lognormal distribution for commented line
count by file in the C-series
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Corrected Comment Text Length

Figures 4.64-4.66 show the results for lognormality of the central part of the
distribution of corrected comment length in the C-series. Each code base
is well-fit by a lognormal distribution: there are no significant deviations in
the central part of the distribution (compare to Figure 4.40 on page 104 and
Figure 4.54 on page 118). The differences in R values between the C- and
A-series are nearly significant (p = 0.064). The C-series R values are not

significantly lower than those for the B-series (p = 0.904).

k4 R value | p3 R value
Overall 99.8% 99.8%
Group C01 99.9% 99.6%
Group C02 99.9% 99.9%
Group C03 99.4% 99.3%
Group C04 98.6% 99.8%
Group C05 98.1% 98.4%
Group C06 98.9% 98.9%
Group CO7 99.6% 99.7%
Group CO08 99.3% 99.2%
Group C09 98.7% 98.7%
Group C10 97.6% 98.5%
Lowest Group 97.6% 98.4%
Second Lowest Group 98.1% 98.5%
Third Lowest Group 98.6% 98.7%
A-series Lowest Group 99.1% 98.9%
A-series Second Lowest Group 99.4% 99.3%
A-series Third Lowest Group 99.5% 99.5%
B-series Lowest Group 97.8% 98.1%
B-series Second Lowest Group 97.9% 98.8%
B-series Third Lowest Group 98.5% 99.1%

Figure 4.64: Goodness of fit of the lognormal distribution for corrected com-
ment text length in the C-series
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Figure 4.66: Normal QQ plots for Log corrected comment length in the C-
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Prob[Corrected Comment Length > X]

Long Tail Behaviour of Comment Length

The C-series data conforms with the long tail hypotheses for corrected com-

ment length, as shown in Figure 4.68. The tail index is larger than for the A-

or B-series, but the significance of this result cannot be determined.
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In each plot, the blue dashed curve is the CCDF for the lognormal distri-
bution fit to the data, and the red dot-and-dash line is the CCDF for the
power law fit to the upper sixteenth of the data.

Figure 4.67: Empirical CCDF's for corrected comment length in the C-series

p value for lognormal distribution | 0.003 *

p value for power law

0.899

estimate of tail index «

1.76

Figure 4.68: Results for Downey’s test applied to corrected comment length

in the C-series
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4.5.2 Summary of C-series Results

The results for the C-series are very similar to those for the B-series. All of

the hypotheses are consistent with the C-series data.

The R values for hypotheses H1b, H2b, and H3b are comparable to those for
the B-series. This is fairer than comparing to the A-series, since both the B-
and C-series were collected in the same way, while the A-series was collected

after the fact and had an imperfect response rate.

There are more examples of deviation from normality because of many files
with the same commented line count. With more cases like this available, a
method might be developed to compensate for such files, especially those that

arise as multiple derived copies of a single original file.
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Chapter 5
Discussion

This work exhibits commonalities in natural commenting behaviour, which
demonstrate that science can provide insight into programming. Of course,
the human element is ubiquitous in commenting, and there are interesting

outliers that fall outside any description.

Chapter 3 organizes the comments of the pilot data set into a taxonomy of
commenting. In analyzing the role of each comment, I assumed that each
comment is written for a reason. The main result is that most comments in

the data have a single purpose, so there is merit in classifying them.

The categories in Chapter 3 can be used deliberately when writing comments.
Indeed, if these categories are popular because they are useful, then this is
what novice programmers should be taught about commenting, because these
are the comments that experts write! This could also benefit the design of
commenting standards: a standard based on natural behaviour is more likely
to be followed.

Section 4.2 studies comment density: the proportion of commented lines by
source code file. The data rules out uniformity of comment density within a
file. However, it looks as though the overall comment density of a file changes

little over its lifetime, and that more difficult code is more densely commented.

Section 4.1 studies file size in terms of number of lines of code, and amount

of commenting per file in terms of number of commented lines. Section 4.3
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studies the length of comment text measured by character count. Each of these
is well approximated by a lognormal distribution, although the distribution of
commented line count is truncated to the left at zero, and the distribution of

comment length has a long tail.

Even more important than the particular distribution is that every code base
has the same distribution, up to location and scale parameters. So, even
though programmers show a lot of individual variation, this variation has
constraints. The distribution is also common to both the operating system

and train project milestones, which are very different programming tasks.

These results from Sections 4.1 and 4.3 are validated in Sections 4.4 and 4.5.
This was done using the test data set which was kept hidden during the in-

vestigation of the pilot data set presented in the preceding sections.

5.1 Why do we Comment?

What programmers cannot express with code, they express with comments.
This is indeed the purpose of commenting. Therefore, programming language
designers should read comments to see which aspects of current programming

languages programmers find inadequate.

For example, programming languages provide the ability to define named con-
stants. However, Section 3.2.2 shows comments in the data whose purpose
is to associate a name with a constant in the code. The presence of these
comments in the data set implies that programmers find the current facilities
for defining named constants lacking! These comments occur in the data most
often for constants that are used only once; perhaps there is a mental barrier

against creating a definition unless it is referenced multiple times.

I suspect that every major programming language feature could have been
predicted by looking at comments in earlier programming languages, although
the data to confirm this would be difficult to collect. The very concept of a
high level language must have been predated by comments in assembly lan-

guage code, written in notations that eventually became the syntax encoded
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in today’s programming languages. Indeed, even assemblers must have been
invented after the use of hand written instruction mnemonics on machine code

listings.

This work studied only the literal comments, which may be too restrictive for
some research goals. The role of commenting overlaps with whitespace, iden-
tifier names, assertions, pseudocode, and even string constants. For example,
identifier names, which are more constrained than comments and thus easier
to study, may provide valuable insight into how programmers use language to

express themselves in code.

5.2 Considerations for Experimental Design

The primary problem when collecting code from the wild is that the raw
data lacks the structure needed for automated extraction of the objects under
study. In Chapter 2, every step in recovering this structure needed manual
intervention, because the required information was not explicit in the data. It
was even difficult to identify which files contained source code, although this
could be solved in the experimental design by specifying a more rigid format for
the students’ code submissions. Detecting commented-out code is particularly
problematic, since programmers often mimic programming language syntax in

legitimate comments.

Requiring so much subjective interpretation of the data inevitably biases the
analysis. However, plenty of information is explicit in the raw data. For
example, the semantics of the code in the data set is well-defined in the sense
that it always compiles. This is true because the students had to produce code

that the compiler would accept in order to achieve their own goals.

In other words, the programmers’ goals often align themselves with the exper-
imenters’ goals. For an experiment studying a particular aspect of program-
ming, it may be worth setting up the programming environment so that the
programmers themselves ensure that the desired information is present. For ex-
ample, if the students’ programming languages had only bracketed comments,

then there would be no need to manually merge adjacent line comments.
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In Sections 4.1 and 4.2, the analysis suffered when a code base had too many
files without comments, as this caused distributions to bunch up at zero. Oc-
curring to varying degrees in almost every code base, this adversely affected es-
timates of location and scale parameters. Group A03, in contrast, commented
every file: for this group, even the lowest values are well-fit by a lognormal
distribution (Figure 4.15, page 81). Thus, there is reason to believe that the
true distribution is lognormal over its entire range, but this is apparent in the

data only when every file is commented.

There are further statistical problems when measuring “goodness of fit” as R
values obtained from linear regression on the QQ plot. These R values are
overly sensitive to sample size: larger samples have higher R values just by

being larger.

For most of the analysis in Chapters 3 and 4, the data was separated by
assignment milestone. I did this because I did not want code or comments
in milestone k4 which remained unchanged in milestone p3 to receive double
weight. However, this problem is more general; there are other ways that code
can be duplicated. Indeed, the provided comments and the compiler-generated
comments excluded in Section 2.2.2 deserve special treatment simply because
they are duplicates of a small number of original comments. Furthermore,
some observed anomalies in the commented line count distributions are the
result of many copies of a comment (Figure 4.15, page 81: group A05, and
Figure 4.63, page 126: groups C03, C06, and C07).

Many of these problems are inherent to studying code in the wild, and many
of my suggestions undermine the idea of collecting code written under natural
conditions. However, there are good reasons to know which aspects of wild
data are the most problematic. In an experiment, which is already artificial,
this knowledge helps the experimenter decide which variables should be ex-
plicitly controlled. Furthermore, naturally written code may lack one or more
of these problematic features. Such a data set may be especially valuable in

giving an unusually clear picture of programming behaviour.
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5.3 Future Work

Ideally, this work would be validated for different programming tasks, com-
puting environments, programming languages, and cultural environments, to
determine which results are universal and which are particular to the condi-

tions of this study.

The taxonomy developed in Chapter 3 must be improved to handle comments
that refer to definitions, because such comments fail to divide cleanly into
distinct categories. The data shows that there is a variety of information rel-
evant to a definition, but only one natural place in which to put it. Perhaps
disjoint categories could be generalized into mutually interacting features. Al-
ternatively, the text of these comments could be analyzed more finely: at the

sentence or word level.

The results of Chapter 3 were not validated on the test data set because
I failed to make the categories objective enough to eliminate human bias.
It might suffice to create operational definitions for the comment categories.
For example, clarification comments describe the surface structure of code,
suggesting a test for identifying clarification comments: “Would this comment
make sense if the code to which it refers were replaced with an equivalent
implementation?”. Subjectivity would remain, but it could be measured by
comparing the judgements of programmers using the operational definitions.
Along these lines, an experiment must be performed to test the robustness of
referent; if the referent of a comment has an objective definition, then different

programmers should agree.

The empirical laws validated in Chapter 4 show that aggregate properties of
source code originate in certain statistical distributions, which suggest tools
for comparing code written under different conditions. Owing to limitations
of space and time, only a few factors were analyzed in this work, and so a
more comprehensive study could be done. The relationship between aspects
of commenting and features in the code could also be investigated; this was

excluded from this study since the content of the code was largely ignored.
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For example, specific features of a programming language may receive a dis-

proportionate number of clarification comments.

Section 4.2.2 studied changes in comment density between the fourth and
seventh assignment milestones. It is possible to study how the code and com-
ments changed over the seven milestones with the existing data. However, it
is difficult to accurately track changes, especially when code is moved or du-
plicated. It may be beneficial to collect data with more fine-grained revision
history, perhaps even monitoring every single change to the source files as they
are edited. This extra information would make it easier to recover accurate

change information in an automated way.

5.4 Closing Remarks

Simply reading so much code has greatly affected my commenting practice.
I read every single comment in the pilot data set multiple times, and spent
much time struggling to understand the intent behind each comment and the
context surrounding it. I now have a greater appreciation of just how little
information is possessed by a reader who is unfamiliar with the code being

read.

I undertook this research project because I believe that programming is a
fascinating human activity. While reading the comments, I observed much
more than was discussed in this thesis. After all, Chapter 3 only discussed
observations directly relevant to the taxonomy. There is insufficient space
here for a full description of everything I saw. Indeed, such a description
would likely exceed the size of the data set itself! In other words, to gain a

better understanding of programming, there is no substitute for reading code.
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